Tree seedling growth and mortality responses to manipulations of calcium and aluminum in a northern hardwood forest

Canadian Journal of Forest Research - Tập 32 Số 6 - Trang 954-966 - 2002
Richard K. Kobe, Gene E. Likens, Christopher Eagar

Tóm tắt

To assess potential forest compositional responses to exchangeable soil calcium (Caexch) and aluminum (Alexch), we characterized light-dependent growth and mortality of tree seedlings under amendments of CaCl2 and AlCl3 at Hubbard Brook Experimental Forest (HBEF), New Hampshire, U.S.A. Seedlings of Acer saccharum Marsh., Fagus grandifolia Ehrh., Betula alleghaniensis Britton, Abies balsamea (L.) Mill., and Picea rubens Sarg. were transplanted into field plots, which were randomly assigned to control, CaCl2, or AlCl3 treatments and stratified across <1 to 35% full sun. Acer saccharum and P. rubens exhibited significantly higher mortality in Al-amended than Ca-amended or control plots. Acer saccharum showed significant increases in relative diameter growth in Ca-amended plots versus controls; all other species showed nonsignificantly higher relative diameter growth under Ca amendments. We incorporated significant seedling responses into a model of forest dynamics (SORTIE) to assess potential changes in species composition under Alexch increases and Caexch losses. SORTIE predicts that further increases in Alexch would have negligible effects on canopy composition within 200 years but that the estimated Caexch depleted from HBEF between 1968 and 1995 and its influence on seedling dynamics could lead to substantial decreases in A. saccharum canopy dominance within a single forest generation (<125 years).

Từ khóa


Tài liệu tham khảo

Adams C.M., 1992, Can. J. For. Res., 22, 1489, 10.1139/x92-199

Berger T.W., 2001, For. Ecol. Manage., 149, 75, 10.1016/S0378-1127(00)00546-6

Bormann F.H., 1970, Ecol. Monogr., 40, 373, 10.2307/1942336

Canham C.D., 1988, Ecology, 69, 786, 10.2307/1941027

Cronan C.S., 1995, J. Environ. Qual., 24, 209, 10.2134/jeq1995.00472425002400020002x

DeHayes D.H., 1999, Bioscience, 49, 789, 10.2307/1313570

Ellsworth D.S., 1994, Can. J. For. Res., 24, 2118, 10.1139/x94-272

Hallett R.A., 1997, Can. J. For. Res., 27, 1233, 10.1139/x97-026

Hedin L.O., 1994, Nature (London), 367, 351, 10.1038/367351a0

Hornbeck J.W., 1985, Can. J. For. Res., 15, 1199, 10.1139/x85-199

Horsley S.B., 2000, Can. J. For. Res., 30, 1365, 10.1139/x00-057

Kelly J.M., 1990, J. Environ. Qual., 19, 172, 10.2134/jeq1990.00472425001900020002x

Kobe R.K., 1996, Ecol. Monogr., 66, 181, 10.2307/2963474

Kobe R.K., 1995, Ecol. Appl., 5, 517, 10.2307/1942040

Likens G.E., 1998, Biogeochemistry, 41, 89, 10.1023/A:1005984620681

Long R.B., 1997, Can. J. For. Res., 27, 1560, 10.1139/x97-074

Markewitz D., 1998, Soc. Am. J., 62, 1428, 10.2136/sssaj1998.03615995006200050040x

McAvoy D.C., 1992, Soc. Am. J., 56, 449, 10.2136/sssaj1992.03615995005600020018x

McLaughlin S.B., 1999, New Phytol., 142, 373, 10.1046/j.1469-8137.1999.00420.x

McLaughlin S.B., 1991, Can. J. For. Res., 21, 1234, 10.1139/x91-172

McLaughlin S.B., 1993, Can. J. For. Res., 23, 380, 10.1139/x93-055

Pacala S.W., 1994, Can. J. For. Res., 24, 2172, 10.1139/x94-280

Pacala S.W., 1996, Ecol. Monogr., 66, 1, 10.2307/2963479

Palmer M.W., 1990, Coenoses, 5, 79

Raynal D.J., 1990, J. Environ. Qual., 19, 180, 10.2134/jeq1990.00472425001900020003x

Reich P.B., 1994, Oecologia, 97, 82, 10.1007/BF00317911

Reich P.B., 1995, Funct. Ecol., 9, 65, 10.2307/2390092

van Breeman N., 1997, Can. J. For. Res., 27, 1110, 10.1139/x97-061

Wilmot T.R., 1996, For. Ecol. Manage., 84, 123, 10.1016/0378-1127(96)03743-7