Tree regeneration following wildfires in the western US: a review

Springer Science and Business Media LLC - Tập 15 - Trang 1-17 - 2019
Camille S. Stevens-Rumann1,2, Penelope Morgan2
1Forest and Rangeland Stewardship, Colorado State University, Fort Collins, USA
2Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, USA

Tóm tắt

Wildfires, like many disturbances, can be catalysts for ecosystem change. Given projected climate change, tree regeneration declines and ecosystem shifts following severe wildfires are predicted. We reviewed scientific literature on post-fire tree regeneration to understand where and why no or few trees established. We wished to distinguish sites that won’t regenerate to trees because of changing climate from sites where trees could grow post fire if they had a seed source or were planted, thus supporting forest ecosystem services for society and nature, such as timber supply, habitat, watershed protection, and carbon storage. Our literature review showed that little to no post-fire tree regeneration was more common in low-elevation, dry forest types than in high-elevation forest types. However, depending on the region and species, low tree regeneration was also observed in high elevation, moist forests. Regeneration densities varied by species and seedling densities were attributed to distances to a seed source, water stress or precipitation, elevation, slope, aspect, and plant competition. Our findings provide land managers with two primary considerations to offset low tree regeneration densities. First, we supply a decision support tool of where to plant tree seedling in large high severity burned patches. Second, we recommend possibilities for mitigating and limiting large high severity burned patches to increase survival of trees to be sources of seed for natural regeneration. Few or no tree seedlings are establishing on some areas of the 150+ forest fires sampled across western US, suggesting that forests may be replaced by shrublands and grasslands, especially where few seed source trees survived the wildfires. Key information gaps on how species will respond to continued climate change, repeated disturbances, and other site factors following wildfires currently limit our ability to determine future trends in forest regeneration. We provide a decision tree to assist managers in prioritizing post-fire reforestation. We emphasize prioritizing the interior of large burned patches and considering current and future climate in deciding what, when, and where to plant trees. Finally, managing fires and forests for more seed-source tree survival will reduce large, non-forested areas following wildfires where post-fire management may be necessary.

Tài liệu tham khảo

Abatzoglou, J.T., and A.P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113: 11770–11775. https://doi.org/10.1073/pnas.1607171113 Agee, J.K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Washington, D.C., USA. Alexander, R.R. 1974. Silviculture of central and southern Rocky Mountain forests: a summary of the status of our knowledge by timber types. USDA Forest Service Research Paper RM-120, Rocky Mountain Research Station, Fort Collins, Colorado, USA. Allen, C.D., A.K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D.D. Breshears, E.T. Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J.-H. Lim, G. Allard, S.W. Running, A. Semerci, and N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 Anderegg, W.R.L., J.A. Hicke, R.A. Fisher, C.D. Allen, J. Aukema, B. Bentz, S. Hood, J.W. Lichstein, A.K. Macalady, N. McDowell, and Y. Pan. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208: 674–683. https://doi.org/10.1111/nph.13477 Baker, W.L. 2018. Transitioning western US dry forests to limited committed warming with bet-hedging and natural disturbances. Ecosphere 9(6): e02288. https://doi.org/10.1002/ecs2.2288 Bell, D.M., J.B. Bradford, and W.K. Lauenroth. 2014. Early indicators of change: divergent climate envelopes between tree life stages imply range shifts in the western United States. Global Ecology and Biogeography 23: 168–180. https://doi.org/10.1111/geb.12109 Blades, J.J., P.Z. Klos, K.B. Kemp, T.E. Hall, J.E. Force, P. Morgan, and W.T. Tinkham. 2016. Forest managers’ response to climate change science: evaluating the constructs of boundary objects and organizations. Forest Ecology and Management 360: 376–387. https://doi.org/10.1016/j.foreco.2015.07.020 Bonnet, V.H., A.W. Schoettle, and W.D. Shepperd. 2005. Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa. Canadian Journal of Forest Research 35: 37–47. https://doi.org/10.1139/x04-157 Brown, P., and R. Wu. 2005. Climate and disturbance forcing of episodic tree recruitment in a Southwestern ponderosa pine landscape. Ecology 86: 3030–3038. https://doi.org/10.1890/05-0034 Buechling, A., P.H. Martin, C.D. Canham, W.D. Shepperd, and M.A. Battaglia. 2016. Climate drivers of seed production in Picea engelmannii and response to warming temperatures in the southern Rocky Mountains. Journal of Ecology 104: 1051–1062. https://doi.org/10.1111/1365-2745.12572 Buma, B., and C.A. Wessman. 2011. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere 2(5): art64. https://doi.org/10.1890/ES11-00038.1 Chambers, M.E., P.J. Fornwalt, S.L. Malone, and M.A. Battaglia. 2016. Patterns of conifer regeneration following high severity wildfires in ponderosa pine dominated forests of Colorado Front Range. Forest Ecology and Management 378: 57–67. https://doi.org/10.1016/j.foreco.2016.07.001 Collins, B.M., and G.B. Roller. 2013. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA. Landscape Ecology 28: 1801–1813. https://doi.org/10.1007/s10980-013-9923-8 Coop, J.D., R.T. Massatti, and A.W. Schoettle. 2010. Subalpine vegetation pattern three decades after stand-replacing fire: effects of landscape context and topography on plant community composition, tree regeneration and diversity. Journal of Vegetation Science 21: 472–487. https://doi.org/10.1111/j.1654-1103.2009.01154.x Coop, J.D., S.A. Parks, S.R. McClernan, and L.M. Holsinger. 2016. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape. Ecological Applications 26: 346–354. https://doi.org/10.1890/15-0775 Coop, J.D., and A.W. Schoettle. 2009. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires. Forest Ecology and Management 257: 893–903. https://doi.org/10.1016/j.foreco.2008.10.034 Coops, N.C., and R.H. Waring. 2011. Estimating the vulnerability of fifteen tree species under changing climate in northwest North America. Ecological Modelling 222: 2119–2129. https://doi.org/10.1016/j.ecolmodel.2011.03.033 Crotteau, J.S., J.M. Varner III, and M.W. Ritchie. 2013. Post-fire regeneration across a fire severity gradient in the southern Cascades. Forest Ecology and Management 287: 103–112. https://doi.org/10.1016/j.foreco.2012.09.022 Davis, K.T., P.E. Higuera, and A. Sala. 2018. Anticipating fire-mediated impacts of climate change using a demographic framework. Functional Ecology 32(7): 1729–1745. https://doi.org/10.1111/1365-2435.13132 Davis, K.T., S.Z. Dobrowski, P.E. Higuera, Z.A. Holden, T.T. Veblen, M.T. Rother, S.A. Parks, A. Sala, and M.P. Maneta. 2019. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. PNAS 116(13):6193–6198. Dennison, P.E., S.C. Brewer, J.D. Arnold, and M.A. Moritz. 2014. Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters 41(8): 2928–2933. https://doi.org/10.1002/2014GL059576 Dillon, G.K., Z.A. Holden, P. Morgan, M.A. Crimmins, E.K. Heyerdahl, and C.H. Luce. 2011. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2(12): 130. https://doi.org/10.1890/ES11-00271.1 Dobrowski, S.Z., A.K. Swanson, J.T. Abatzoglou, Z.A. Holden, H.D. Safford, M.K. Schwartz, and D.G. Gavin. 2015. Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US. Global Ecology and Biogeography 24: 917–927. https://doi.org/10.1111/geb.12302 Dodson, E.K., and H.T. Root. 2013. Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA. Forest Ecology and Management 302: 163–170. https://doi.org/10.1016/j.foreco.2013.03.050 Donato, D.C., J.B. Fontaine, W.D. Robinson, J.B. Kauffman, and B.E. Law. 2009. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. Journal of Ecology 97: 142–154. https://doi.org/10.1111/j.1365-2745.2008.01456.x Donato, D.C., B.J. Harvey, and M.G. Turner. 2016. Regeneration of montane forests 24 years after the 1988 Yellowstone fires: a fire-catalyzed shift in lower treelines? Ecosphere 7(8): e01410. https://doi.org/10.1002/ecs2.1410 Eskelson, B.N.I., and V.J. Monleon. 2018. A 6 year longitudinal study of post-fire woody carbon dynamics in California’s forests. Canadian Journal of Forest Research 46: 610–620. https://doi.org/10.1139/cjfr-2015-0375 Flannigan, M., A.S. Cantin, W.J. de Groot, M. Wotton, A. Newberry, and L.M. Gowman. 2013. Global wildland fire season severity in the 21st century. Forest Ecology and Management 294: 54–61. Freund, J.A., J.F. Franklin, A.J. Larson, and J.A. Lutz. 2014. Multi-decadal establishment for single-cohort Douglas-fir forests. Canadian Journal of Forest Research 44: 1068–1078. https://doi.org/10.1139/cjfr-2013-0533 Gruell, G.E. 2001. Fire in Sierra Nevada forests: a photographic interpretation of ecological change since 1849. Mountain Press Publishing Company, Missoula, Montana, USA. *Haffey, C., T.D. Sisk, C.D. Allen, A.E. Thode, and E.Q. Margolis. 2018. Limits to ponderosa pine regeneration following large high severity forest fires in the United States Southwest. Ecology 14: 143–162. Haire, S.L., and K. McGarigal. 2010. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landscape Ecology 25: 1055–1069. https://doi.org/10.1007/s10980-010-9480-3 Halofsky, J.S., D.C. Dontao, J.F. Franklin, J.E. Halofsky, D.L. Peterson, and B.J. Harvey. 2018. The nature of the beast: examining climate adaptation options in forests with stand-replacing fire regimes. Ecosphere 9(3): e02140. https://doi.org/10.1002/ecs2.2140 Hansen, W.D., K.H. Braziunas, W. Rammer, R. Seidl, and M.G. Turner. 2018. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology 99: 966–977. https://doi.org/10.1002/ecy.2181 Harvey, B.J., D.C. Donato, W.H. Romme, and M.G. Turner. 2013. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Ecology 94: 2475–2486. https://doi.org/10.1890/13-0188.1 *Harvey, B.J., D.C. Donato, W.H. Romme, and M.G. Turner. 2014a. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecological Applictions 24: 1608–1625. https://doi.org/10.1890/13-1851.1 Harvey, B.J., D.C. Donato, and M.G. Turner. 2014b. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US northern Rockies. Proceedings of the National Academy of Sciences 111: 15120–15125. https://doi.org/10.1073/pnas.1411346111 Harvey, B.J., D.C. Donato, and M.G. Turner. 2016. High and dry: postfire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. Global Ecology and Biogeography 25: 655–669. https://doi.org/10.1111/geb.12443 Hessburg, P.F., J.K. Agee, and J.F. Franklin. 2005. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras. Forest Ecolology and Management 211: 117–139. https://doi.org/10.1016/j.foreco.2005.02.016 Hessburg, P.F., D.J. Churchill, A.J. Larson, R.D. Haugo, C. Miller, T.A. Spies, M.P. North, N.A. Povak, R.T. Belote, P.H. Singleton, W.L. Gaines, R.E. Keane, G.H. Aplet, S.L. Stephens, and P. Morgan. 2015. Restoring fire-prone Inland Pacific landscapes: seven core principles. Landscape Ecology 30(10): 1805–1835. https://doi.org/10.1007/s10980-015-0218-0 Hicke, J., A.J.H. Meddens, and C. Kolden. 2016. Recent tree mortality in the western United States from bark beetles and forest fires. Forest Science 62: 141–153. https://doi.org/10.5849/forsci.15-086 Hicke, J.A., C.D. Allen, A.R. Desai, M.C. Dietze, R.J. Hall, D.M. Kashian, D. Moore, K.F. Raffa, R.N. Sturrock, and J. Vogelmann. 2012. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology 18: 7–34. https://doi.org/10.1111/j.1365-2486.2011.02543.x Hobson, K.A., and J. Schieck. 1999. Changes in bird communities in boreal mixedwood forest: harvest and wildfire effects over 30 years. Ecological Applications 9: 849–863. https://doi.org/10.1890/1051-0761%281999%29009%5B0849:CIBCIB%5D2.0.CO;2 IPCC [Intergovernmental Panel on Climate Change]. 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Pages 1-1535 in: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors. Cambridge University Press, Cambridge, England, United Kingdom, and New York, New York, USA. Johnson, R., L. Stritch, P. Olwell, S. Lambert, M.E. Horning, and R. Cronn. 2010. What are the best seed sources for ecosystem restoration on BLM and USFS lands? Native Plants Journal 11: 117–131. https://doi.org/10.2979/NPJ.2010.11.2.117 Kemp, K.B., P.E. Higuera, and P. Morgan. 2016. Fire legacies impact conifer regeneration across environmental gradients in the US northern Rockies. Landscape Ecology 31: 619–636. https://doi.org/10.1007/s10980-015-0268-3 Keyser, T.L., L.B. Lentile, F.W. Smith, and W.D. Shepperd. 2008. Changes in forest structure after a large, mixed-severity wildfire in ponderosa pine forests of the Black Hills, South Dakota, USA. Forest Science 54: 328–338. Kolden, C.A., J.A. Lutz, C.H. Key, J.T. Kane, and J.W. van Wagtendonk. 2012. Mapped versus actual burned area within wildfire perimeters: characterizing the unburned. Forest Ecology and Management 286: 38–47. https://doi.org/10.1016/j.foreco.2012.08.020 Krawchuk, M.A., S.L. Haire, J. Coop, M.-A. Parisien, E. Whitman, G. Chong, and C. Miller. 2016. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere 7(12): e01632. https://doi.org/10.1002/ecs2.1632 Kulakowski, D., C. Mathews, D. Jarvis, and T.T. Veblen. 2013. Compound disturbances in sub-alpine forests in western Colorado favor future dominance by quaking aspen (Populus tremuloides). Journal of Vegetation Science 24: 168–176. https://doi.org/10.1111/j.1654-1103.2012.01437.x Larson, A.J., R.T. Belote, C.A. Cansler, S.A. Parks, and M.S. Dietz. 2013. Latent resilience in ponderosa pine forest: effects of resumed frequent fire. Ecological Applications 23: 1243–1249. https://doi.org/10.1890/13-0066.1 Larson, A.J., and J.F. Franklin. 2005. Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. Forest Ecology and Management 218: 25–36. https://doi.org/10.1016/j.foreco.2005.07.015 Leirfallom, S.B., R.E. Keane, D.F. Tomback, and S.Z. Dobrowski. 2015. The effects of seed source health on whitebark pine (Pinus albicaulis) regeneration density after wildfire. Canadian Journal of Forest Research 45: 1597–1606. https://doi.org/10.1139/cjfr-2015-0043 Lenoir, J., J.C. Gégout, P.A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 230: 1768–1771. https://doi.org/10.1126/science.1156831 Lentile, L.B., F.W. Smith, and W.D. Shepperd. 2005. Patch structure, fire-scar formation, and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA. Canadian Journal of Forest Research 35: 2875–2885. https://doi.org/10.1139/x05-205 Liang, S., M.D. Hurteau, and A.L. Westerling. 2018. Large-scale restoration increases carbon stability under projected climate and wildfire regimes. Frontiers in Ecology and the Environment 16: 207–212. https://doi.org/10.1002/fee.1791 Littell, J.S., D. McKenzie, D.L. Peterson, and A.L. Westerling. 2009. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications 19: 1003–1021. https://doi.org/10.1890/07-1183.1 Lotan, J.E. 1967. Cone serotiny of lodgepole pine near West Yellowstone, Montana. Forest Science 13: 55–59. Lydersen, J., and M. North. 2012. Topographic variation in structure of mixed-conifer forests under an active fire regime. Ecosystems 15: 1134–1146. https://doi.org/10.1007/s10021-012-9573-8 MacKenzie, M.D., T.H. DeLuca, and A. Sala. 2004. Forest structure and organic horizon analysis along a fire chronosequence in the low elevation forests of western Montana. Forest Ecology and Management 203: 331–343. https://doi.org/10.1016/j.foreco.2004.08.003 Malone, S.L., P.J. Fornwalt, M.A. Battaglia, M.E. Chambers, J.M. Iniquez, and C.H. Sieg. 2018. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest. Forests 9: 45. https://doi.org/10.3390/f9010045 Meddens, A.J., C.A. Kolden, J.A. Lutz, J.T. Abatzoglou, and A.T. Hudak. 2018. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 9(2): e02029. https://doi.org/10.1002/ecs2.2029 Meigs, G.W., D.C. Donato, J.L. Campbell, J.G. Martin, and B.E. Law. 2009. Forest fire impacts on carbon uptake, storage, and emission: the role of burn severity in the eastern Cascades, Oregon. Ecosystems 12: 1246–1267. https://doi.org/10.1007/s10021-009-9285-x Meunier, J., P.M. Brown, and W.H. Romme. 2014. Tree recruitment in relation to climate and fire in northern Mexico. Ecology 95: 197–209. https://doi.org/10.1890/13-0032.1 Morgan, J.W., J.D. Vincent, and J.S. Camac. 2018. Upper range limit establishment after wildfire of an obligate-seeding montane forest tree fails to keep pace with 20th century warming. Journal of Plant Ecology 11: 200–207. https://doi.org/10.1093/jpe/rtw130 Morgan, P., M. Moy, C.A. Droske, S.A. Lewis, L.B. Lentile, and P.R. Robichaud. 2014. Vegetation response to burn severity, native grass seeding, and salvage logging. Fire Ecology 11: 31–58. https://doi.org/10.4996/fireecology.1102031 Nagel, T.A., and A.H. Taylor. 2005. Fire and persistence of montane chaparral in mixed conifer forest landscapes in the northern Sierra Nevada, Lake Tahoe Basin, California, USA. Journal of the Torrey Botanical Society 132: 442–457. https://doi.org/10.3159/1095-5674%282005%29132%5B442:FAPOMC%5D2.0.CO;2 NIFC [National Interagency Fire Center]. 2018. Homepage. Fire information.. https://www.nifc.gov/fireInfo/fireInfo_statistics.html Accessed 1 July 2018. North, M.P., J.T. Stevens, T.F. Greene, M. Coppeletta, E.E. Knapp, A.M. Latimer, C.M. Restaino, R.E. Tompkins, K.R. Welch, R.A. York, D.J.N. Young, J.N. Axelson, T.N. Buckley, B.L. Estes, R.N. Hager, J.W. Long, M.D. Meyer, S.M. Ostoja, H.D. Safford, K.L. Shive, C.L. Tubbesing, H. Vice, D. Walsh, C.M. Werner, and P. Wyrsch. 2019. Tamm review: reforestation for resilience in dry western US forests. Forest Ecology and Management 432: 209–224. https://doi.org/10.1016/j.foreco.2018.09.007 Ouzts, J., T. Kolb, D. Huffman, and A.S. Meador. 2015. Post-fire ponderosa pine regeneration with and without planting in Arizona and New Mexico. Forest Ecology and Management 354: 281–290. https://doi.org/10.1016/j.foreco.2015.06.001 Owen, S.M., C.H. Sieg, A.J.S. Meador, P.Z. Fulé, J.M. Iniguez, L.S. Baggett, P.J. Fornwalt, and M. Battaglia. 2017. Spatial patterns of ponderosa pine regeneration in high-severity burn patches. Forest Ecology and Management 405: 134–149. https://doi.org/10.1016/j.foreco.2017.09.005 Paritsis, J., T.T. Veblen, and A. Holz. 2015. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. Journal of Vegetation Science 26: 89–101. https://doi.org/10.1111/jvs.12225 Parks, S.A., L.M. Holsinger, C. Miller, and C.R. Nelson. 2015. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecological Applications 25: 1478–1492. https://doi.org/10.1890/14-1430.1 Parks, S.A., C. Miller, J.T. Abatzoglou, L.M. Holsinger, M.A. Parisien, and S.Z. Dobrowski. 2016a. How will climate change affect wildland fire severity in the western US? Environmental Research Letters 11: 035002. https://doi.org/10.1088/1748-9326/11/3/035002 Parks, S.A., C. Miller, L.M. Holsinger, L.S. Bagget, and B.J. Bird. 2016b. Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire 25: 182–190. https://doi.org/10.1071/WF15107 Passovoy, M.D., and P.Z. Fulé. 2006. Snag and woody debris dynamics following severe wildfires in northern Arizona ponderosa pine forests. Forest Ecology and Management 223: 237–246. https://doi.org/10.1016/j.foreco.2005.11.016 Pausas, J.G., J. Llovet, A. Rodrigo, and R. Vallejo. 2008. Are wildfires a disaster in the Mediterranean basin? – A review. International Journal of Wildland Fire 17: 713–723. https://doi.org/10.1071/WF07151 Petrie, M.D., J.B. Bradford, R.M. Hubbard, W.K. Lauenroth, C.M. Andrews, and D.R. Schlaepfer. 2017. Climate change may restrict dryland forest regeneration in the 21st century. Ecology 98: 1548–1559. https://doi.org/10.1002/ecy.1791 Petrie, M.D., A.M. Wildeman, J.B. Bradford, R.M. Hubbard, and W.K. Lauenroth. 2016. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration. Forest Ecology and Management 361: 328–338. https://doi.org/10.1016/j.foreco.2015.11.028 Prichard, S., C.S. Stevens-Rumann, and P. Hessburg. 2017. Tamm review: wildland fire-on-fire interactions: management implications under a changing climate. Forest Ecology and Management 396: 217–233. https://doi.org/10.1016/j.foreco.2017.03.035 Rehfeldt, G.E., B.C. Jaquish, C. Saenz-Romero, D.G. Joyce, L.P. Leites, J.B.St. Clair, and J. Lopez-Upton. 2014. Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation. Forest Ecology and Management 324: 147–157. https://doi.org/10.1016/j.foreco.2014.02.040 Retana, J., J.M. Espelta, A. Habrouk, J.L. Ordenez, and F. Sol-Mora. 2002. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 9: 89–97. https://doi.org/10.1080/11956860.2002.11682694 Ritchie, M.W., and E.E. Knapp. 2014. Establishment of a long-term fire salvage study in an interior ponderosa pine forest. Journal of Forestry 112: 395–400. https://doi.org/10.5849/jof.13-093 Roccaforte, J.P., P.Z. Fulé, W.W. Chancellor, and D.C. Laughlin. 2012. Woody debris and tree regeneration dynamics following severe wildfires in Arizona ponderosa pine forests. Canadian Journal of Forest Research 42: 593–604. https://doi.org/10.1139/x2012-010 Rother, M.T., and T.T. Veblen. 2016. Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range. Ecosphere 7: e01594. https://doi.org/10.1002/ecs2.1594 Rother, M.T., T.T. Veblen, and L.G. Furman. 2015. A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions. Canadian Journal of Forest Research 45: 1607–1616. https://doi.org/10.1139/cjfr-2015-0033 Savage, M., P.M. Brown, and J. Feddema. 1996. The role of climate in a pine forest regeneration pulse in the southwestern United States. Ecoscience 3: 310–318. https://doi.org/10.1080/11956860.1996.11682348 Savage, M., and J.N. Mast. 2005. How resilient are Southwestern ponderosa pine forests to crown fires? Canadian Journal of Forest Research 35: 967–977. https://doi.org/10.1139/x05-028 Savage, M., J.N. Mast, and J.J. Feddema. 2013. Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Canadian Journal of Forest Research 43: 570–583. https://doi.org/10.1139/cjfr-2012-0404 Schoennagel, T., J.K. Balch, H. Brenkert-Smith, P.E. Dennison, B.J. Harvey, M.A. Krawchuk, N. Mietkiewicz, P. Morgan, M.A. Moritz, R. Rasker, and M.G. Turner. 2017. Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences 114: 4582–4590. https://doi.org/10.1073/pnas.1617464114 Serra-Diaz, J.M., C. Maxwell, M.S. Lucash, R.M. Scheller, D.M. Lafower, A.D. Miller, A.J. Tepley, H.E. Epstein, K.J. Anderson-Teixeira, and J.R. Thompson. 2018. Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century. Scientific Reports 8: 6749. Shatford, J.P.A., D.E. Hibbs, and K.J. Puettmann. 2007. Conifer regeneration after forest fire in Klamath-Siskiyous: how much, how soon? Journal of Forestry 105: 139–146. Shive, K.L., H.K. Preisler, K.R. Welch, H.D. Safford, R.J. Butz, K.L. O’Hara, and S.L. Stephens. 2018. From the stand scale to the landscape scale: predicting the spatial patterns of forest regeneration after disturbance. Ecological Applications 28: 1626–1639. https://doi.org/10.1002/eap.1756 Shive, K.L., C.H. Sieg, and P.Z. Fulé. 2013. Pre-wildfire management treatments interact with fire severity to have lasting effects on post-wildfire vegetation response. Forest Ecology and Management 297: 75–83. https://doi.org/10.1016/j.foreco.2013.02.021 Stevens-Rumann, C., and P. Morgan. 2016. Repeated wildfires alter forest recovery of mixed-conifer ecosystems. Ecological Applications 26: 1842–1853. https://doi.org/10.1890/15-1521.1 Stevens-Rumann, C.S., K.B. Kemp, P.E. Higuera, B.J. Harvey, M.T. Rother, D.C. Donato, P. Morgan, and T.T. Veblen. 2018. Evidence for declining forest resilience to wildfires under climate change. Ecology Letters 21: 243–252. https://doi.org/10.1111/ele.12889 Stevens-Rumann, C.S., P. Morgan, and C. Hoffman. 2015. Bark beetles and wildfires: how does forest recovery change with repeated disturbances? Ecosphere 6(6): 100. https://doi.org/10.1890/ES14-00443.1 Stevens-Rumann, C.S., C.H. Sieg, and M.E. Hunter. 2012. Ten years after wildfires: how does varying tree mortality impact fire hazard and forest resiliency? Forest Ecology and Management 267: 199–208. https://doi.org/10.1016/j.foreco.2011.12.003 Strom, B.A., and P.Z. Fulé. 2007. Pre-wildfire fuel treatments affect long-term ponderosa pine forest dynamics. International Journal of Wildland Fire 16: 128–138. https://doi.org/10.1071/WF06051 Tepley, A.J., F.J. Swanson, and T.A. Spies. 2013. Fire-mediated pathways of stand development in Douglas-fir/western hemlock forests of the Pacific Northwest, USA. Ecology 94: 1729–1743. https://doi.org/10.1890/12-1506.1 Tepley, A.J., J.R. Thompson, H.E. Epstein, and K.J. Anderson-Teixeira. 2017. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global Change Biology 23: 4117–4132. https://doi.org/10.1111/gcb.13704 Tercero-Bucardo, N., T. Kitzberger, T.T. Veblen, and E. Raffaele. 2007. A field experiment on climatic and herbivore impacts on post-fire tree regeneration in north-western Patagonia. Journal of Ecology 95: 771–779. https://doi.org/10.1111/j.1365-2745.2007.01249.x Thomas, D., D. Butry, S. Gilbert, D. Webb, and J. Fung. 2017. The costs and losses of wildfires. A literature survey. NIST Special Publication 1215. National Institute of Standards and Technology, Washington, D.C., USA. https://doi.org/10.6028/NIST.SP.1215 Thompson, M.P., and D.E. Calkin. 2011. Uncertainty and risk in wildland fire management: a review. Journal of Environmental Management 92(8): 1895–1909. https://doi.org/10.1016/j.jenvman.2011.03.015 Turner, M.G., D. Tinker, W. Romme, D. Kashian, and C. Litton. 2004. Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park (USA). Ecosystems 7: 751–775. https://doi.org/10.1007/s10021-004-0011-4 Turner, M.G., T.G. Whitby, D.B. Tinker, and W. Romme. 2016. Twenty-four years after the Yellowstone fires: are postfire lodgepole pine stands converging in structure and function? Ecology 97: 1260–1273. https://doi.org/10.1890/15-1585.1 Urza, A.K., and J.S. Sibold. 2017. Climate and seed availability initiate alternate post-fire trajectories in a lower subalpine forest. Journal of Vegetation Science 28: 1–14. https://doi.org/10.1111/jvs.12465 USDA and USDI [US Department of Agriculture and US Department of the Interior] 2018. Forest and rangelands. National cohesive wildland fire management strategy.. https://www.forestsandrangelands.gov/strategy/ Accessed 1 June 2018. van Mantgem, P.J., J.C.B. Nesmith, M.B. Keifer, E.E. Knapp, A. Flint, and L. Flint. 2013. Climatic stress increases forest fire severity across the western United States. Ecology Letters 16: 1151–1156. https://doi.org/10.1111/ele.12151 Walker, R.B., J.B. Coop, S.A. Parks, and L. Trader. 2018. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9 (4): e02182. https://doi.org/10.1002/ecs2.2182 Welch, K.R., H.D. Safford, and T.P. Young. 2016. Predicting conifer establishment post wildfire in mixed conifer forests of the North American mediterranean-climate zone. Ecosphere 7(12): e01609. https://doi.org/10.1002/ecs2.1609 Westerling, A.L., H.G. Hidalgo, D.R. Cayan, and T.W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313: 940–943. https://doi.org/10.1126/science.1128834 Westerling, A.L., M.G. Turner, E.A.H. Smithwick, W.H. Romme, and M.G. Ryan. 2011. Continued warming could transform greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences 108: 13165–13170. https://doi.org/10.1073/pnas.1110199108 Wilson, J.B., and A.D. Agnew. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research 23: 263–336. https://doi.org/10.1016/S0065-2504(08)60149-X Ziegler, J.P., C.M. Hoffman, P.J. Fornwalt, C.H. Sieg, M.A. Battaglia, M.E. Chambers, and J.M. Iniguez. 2017. Tree regeneration spatial patterns in ponderosa pine forests following stand-replacing fire: influence of topography and neighbors. Forests 8(10): 391. https://doi.org/10.3390/f8100391