Tree-based tensor formats

Antonio Falcó1, Wolfgang Hackbusch2, Anthony Nouy3
1ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain
2Max-Planck-Institut Mathematik in den Naturwissenschaften, Leipzig, Germany
3Centrale Nantes, LMJL UMR CNRS 6629, Nantes Cedex 3, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math. 16, 1423–1472 (2016)

Falcó, A., Hackbusch, W., Nouy, A.: On the Dirac–Frenkel variational principle on tensor Banach spaces. Found. Comput. Math. (2018). https://doi.org/10.1007/s10208-018-9381-4

Falcó, A., Hackbusch, W.: Minimal subspaces in tensor representations. Found. Comput. Math. 12, 765–803 (2012)

Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121, 503–530 (2012)

Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)

Greub, W.H.: Linear Algebra. Graduate Text in Mathematics, 4th edn. Springer, Berlin (1981)

Grothendieck, A.: Résumé de la th éorie métrique des produit tensoriels topologiques. Bol. Soc. Mat. S ão Paulo 8, 1-79 (1953/56)

Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)

Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

Hackbusch, W.: Truncation of tensors in the hierarchical format. same issue of SEMA (2018)

Khoromskij, B.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110(1), 1–19 (2012)

Light, W.A., Cheney, E.W.: Approximation Theory in Tensor Product Spaces. Lect. Notes Math., 1169th edn. Springer, Berlin (1985)

Nouy, A.: Low-rank methods for high-dimensional approximation and model order reduction. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017)

Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)

Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147902 (2003)