Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xử lý nước thải sinh ra từ quá trình thẩm thấu ngược nước rác thải bằng quy trình kết hợp oxy hóa tiên tiến - Nitrification dị dưỡng - Khử nitrat kỵ khí
Tóm tắt
Nghiên cứu này nhằm phát triển một hệ thống xử lý đa giai đoạn cho nước thải độc hại mang tên tinh chất thẩm thấu ngược từ nước rác thải. Do đó, một sự kết hợp giữa quy trình tách amoniac (ASP), quy trình oxy hóa xúc tác bằng ozone (COP), và quy trình nitrification dị dưỡng - khử nitrat kỵ khí (HNADP) được đề xuất và chất lượng nước thải đã được đánh giá cho các chỉ tiêu yêu cầu như nhu cầu oxy hóa học (COD), nitơ amoniac (NH4+-N), và tổng nitơ (TN). ASP có hiệu suất loại bỏ NH4+-N và TN trong nước thải ở mức trung bình. COP được xúc tác bởi carbon hoạt tính hỗ trợ cerium đạt được hiệu suất tốt trong việc xử lý COD. Nước thải từ HNADP có hiệu suất loại bỏ COD, NH4+-N, và TN cao nhất. Như vậy, nước thải từ quy trình kết hợp đã thành công khi đáp ứng các tiêu chuẩn xả thải về NH4+-N và TN theo Bảng 1 của GB 16889-2008 tại Trung Quốc. Để nghiên cứu cơ chế vi sinh vật của quá trình loại bỏ ô nhiễm trong HNADP, phương pháp giải trình tự 16S rRNA có độ phân giải cao đã được thực hiện và kết quả chỉ ra rằng độ phong phú tương đối và đa dạng của vi sinh vật dao động kèm theo sự thay đổi của tỷ lệ COD/TN trong HNADP. Truepera và Halomonas đã được xác định là các chi chủ chốt tham gia vào sự phân hủy đồng thời của COD và ô nhiễm chứa nitơ, các gen chức năng (hao, amoA, nirS, và nirK) được dự đoán trong quy trình nitrification và khử nitrat. Tổng thể, nghiên cứu này trình bày một hệ thống đa giai đoạn khả thi cho việc xử lý tinh chất và đề xuất rằng việc khám phá thêm các kỹ thuật kết hợp có thể dẫn đến hiệu suất loại bỏ thậm chí còn thỏa đáng hơn.
Từ khóa
Tài liệu tham khảo
Ai S (2020) Screening of acinetobacter with fully aerobic denitrification function and its application in high NH4+-N wastewater. Dissertation, Chongqing University of Technology
Anumol T, Sgroi M, Park M, Roccaro PA, Snyder S (2015) Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates. Water Res 76:76–87. https://doi.org/10.1016/j.watres.2015.02.019
APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, USA
Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 449-456:0043–1354. https://doi.org/10.1016/0043-1354(81)90054-3
Basu B (2022) The radiophiles of Deinococcaceae family: resourceful microbes for innovative biotechnological applications. Curr Res Microbial Sci 2666-5174. https://doi.org/10.1016/j.crmicr.2022.100153
Brown K, Ghoshdastidar AJ, Hanmore J, Frazee J, Tong AZ (2013) Membrane bioreactor technology: a novel approach to the treatment of compost leachate. Waste Manag 33(11):2188–2194. https://doi.org/10.1016/j.wasman.2013.04.006
Chen C, Feng H, Deng Y (2019) Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Res 153:100–107. https://doi.org/10.1016/j.watres.2019.01.013
Chen C, Sun F, Zhang H, Wang J, Shen Y, Liang X (2016) Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresour Technol 216:571–578. https://doi.org/10.1016/j.biortech.2016.05.115
Chen X, Zhang Q, Zhu YN, Zhao TT (2021a) Response of wastewater treatment performance, microbial composition and functional genes to different C/N ratios and carrier types in MBBR inoculated with heterotrophic nitrification-aerobic denitrification bacteria. Bioresour Technol 125339:0960–8524. https://doi.org/10.1016/j.biortech.2021.125339
Chen X, Yuan C, Zhu Y, Liu H, Chen W, Zhang Q (2022) Bioaugmentation with Acinetobacter sp. TAC-1 to enhance nitrogen removal in swine wastewater by moving bed biofilm reactor inoculated with bacteria. Bioresour Technol 127506:0960–8524. https://doi.org/10.1016/j.biortech.2022.127506
Chen X, Zhang Q, Zhu Y, Zhao T (2021b) Response of rotating biological contactor started up by heterotrophic nitrification-aerobic denitrification bacteria to various C-N ratios. Chemosphere 133048:0045–6535. https://doi.org/10.1016/j.chemosphere.2021.133048
Cingolani D, Fatone F, Frison N, Spinelli M, Eusebi AL (2018) Pilot-scale multi-stage reverse osmosis (DT-RO) for water recovery from landfill leachate. Waste Manage 76. https://doi.org/10.1016/j.wasman.2018.03.014
Cui YR, Wu Q, Zhang LL, Cheng Y, Wang X, Cui FL (2015) Study on water quality change of landfill leachate by catalytic ozone oxidation. J Henan Normal Univ: Nat Sci Edition. https://doi.org/10.16366/j.cnki.1000-2367.2015.06.012
Deng Y, Ezyske CM (2011) Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res 45(18):6189–6194. https://doi.org/10.1016/j.watres.2011.09.015
Feng HL, Mao W-L, Wang XJ, Chen SH (2020) Effect and energy consumption analysis of different ozonation catalytic oxidation systems on aged landfill leachate. J Environ Eng 14(10):12. https://doi.org/10.12030/j.cjee.201912053
He PJ, Xue JF, Shao LM, Li GJ, Lee DJ (2006) Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill. Water Res 40(7):1465–1473. https://doi.org/10.1016/j.watres.2006.01.048
Huang CCP (2009) Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci Total Environ 407(11):3473–3481. https://doi.org/10.1016/j.scitotenv.2009.02.009
Huang J-R, Chen X, Bin-Bin H, Cheng J-R, Zhu M-J (2022) Bioaugmentation combined with biochar to enhance thermophilic hydrogen production from sugarcane bagasse. Bioresour Technol 126790:0960–8524. https://doi.org/10.1016/j.biortech.2022.126790
Huang WY, She ZL, Gao MC, Wang Q, Jin CJ, Zhao YG, Guo L (2019) Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. Sci Total Environ 651:859–870. https://doi.org/10.1016/j.scitotenv.2018.09.218
Idowu IA, Atherton W, Hashim K, Kot P, Alkhaddar R, Shaw A (2019) An analyses of the status of landfill classification systems in developing countries: sub Saharan Africa landfill experiences. Waste Manage 87:761–771. https://doi.org/10.1016/j.wasman.2019.03.011
Keyikoglu R, Karatas O, Rezania H, Khataee A (2020) A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep Purif Technol 259:118182. https://doi.org/10.1016/j.seppur.2020.118182
Kim E J , Kim H, Lee E (2021) Influence of ammonia stripping parameters on the efficiency and mass transfer rate of ammonia removal. Appl Sci, 2021, 11(1):441. https://doi.org/10.3390/app11010441
Li H, Zhou S, Sun Y, Lv J (2010) Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent. Waste Manage 30(11):2122–2129. https://doi.org/10.1016/j.wasman.2010.03.036
Li LS, Zhang PY, Zhu WP, Han WY, Zhang ZL (2005) Comparison of O3-BAC, UV/O3-BAC and TiO2/UV/O3-BAC processes for removing organic pollutants in secondary effluents. J Photochem Photobiol Biol 171(2):145–151. https://doi.org/10.1016/j.jphotochem.2004.09.016
Liming S, Yingtao D, Junjie Q, Fan L, Ye Z, Jingjing H (2021) Pollutant removal efficiency of each unit of long-age leachate membrane bio-nanofiltration combined facility. Environ Sci 42:(3). https://doi.org/10.13227/j.hjkx.202007263
Ma C, Yuan P, Jia S, Liu Y, Zhang X, Hou S, He Z (2019) Catalytic micro-ozonation by Fe3O4 nanoparticles @ cow-dung ash for advanced treatment of biologically pre-treated leachate. Waste Manage 83:23–32. https://doi.org/10.1016/j.wasman.2018.10.045
Moravia WG, Amaral CS, Lange C (2013) Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system. Waste Manage 33(1):89–101. https://doi.org/10.1016/j.wasman.2012.08.009
Mu SQ, Chen XL, Song BW, Wu CW, Li QB (2022) Enhanced performance and mechanism of the combined process of ozonation and a semiaerobic aged refuse biofilter for mature landfill leachate treatment. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.136432
Remmas N, Roukouni C (2017) Ntougias S (2017) Bacterial community structure and prevalence of Pusillimonas-like bacteria in aged landfill leachate. Environ Sci Pollut Res Int 24(7):6757–6769. https://doi.org/10.1007/s11356-017-8416-8
Ren S, Wang Z, Jiang H, Qiu J, Li X, Zhang Q, Peng Y (2021) Stable nitritation of mature landfill leachate via in-situ selective inhibition by free nitrous acid. Bioresour Technol 340:125647. https://doi.org/10.1016/j.biortech.2021.125647
Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077
Tong ZG, Zhu XL, Chen WX, Xi ZC, Kang CX (2022) Coupled heat- activated persulfate/ electrochemistry for catalytic oxidation landfill leachate concentrate. Environ Chem 41(9):1–9. https://doi.org/10.7524/j.issn.0254-6108.2021053104
Wang F, Gu ZP, Hu YS, Li QB (2021) Split dosing of H2O2 for enhancing recalcitrant organics removal from landfill leachate in the Fe0/ H2O2 process: degradation efficiency and mechanism. Sep Purif Technol 278:1383–5866. https://doi.org/10.1016/j.seppur.2021.119564
Wang F, Huang Y, Zhou XC, He C, Li QB (2020) Molecular-level transformation characteristics of refractory organics in landfill leachate during ozonation treatment. Sci Total Environ 2020:141558. https://doi.org/10.1016/j.scitotenv.2020.141558
Wang HY, Ma F, Su JF, Zuo W, Zhang XX, Zhang J (2007) Effects of different carbon sources and carbon-nitrogen ratios on denitrification performance of a plant of aerobic denitrifying bacteria. J Environ Sci 27(6):5. https://doi.org/10.13671/j.hjkxxb.2007.06.011
Wang K, Wu DJ, Peng YZ, Wang SY (2018) Analysis of landfill leachate treatment process research and application status. J Beijing Univ Technol 44(1):12. https://doi.org/10.11936/bjutxb2017040036
Wang XY, Wang YN, Li XY, Sun YN, Wu H, Chen DL (2016) Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Manage 56:271–279. https://doi.org/10.1016/j.wasman.2016.07.040
Wang YH (2017) Research on coagulation-advanced oxidation treatment technology of landfill leachate nanofiltration concentrate. Dissertation, Shanghai Jiao Tong University
Wu C, Chen W, Gu Z, Li Q (2020) review of the characteristics of Fenton and ozonation systems in landfill leachate treatment. Sci Total Environ 2020:762. https://doi.org/10.1016/j.scitotenv.2020.143131
Xi CC, Cheng W, Jiao M, Ren JH, Zhang X, Wan T (2022) Study on nitrogen removal mechanism of carbon-nitrogen value on aerobic fluidized bed biofilm reactor. Water Treat Technol 48(5):5. https://doi.org/10.16796/j.cnki.1000-3770.2022.05.015
Zeng XL, Chen L, Ding WC, Zhang YX, Liu YD, Wang JK (2016) Treatment of advanced landfill leachate by ammonia stripping, two-stage mineralized waste-AC-Fenton process. J Environ Eng 11(9):7. https://doi.org/10.12030/j.cjee.201611104
Zha FG, Yao DX, Hu YB, Gao LM, Wang XM (2016) Integration of US/Fe(2+) and photo-Fenton in sequencing for degradation of landfill leachate. Water Sci Technol 73:2. https://doi.org/10.2166/wst.2015.487
Zhang C, Yuan C, Zhu Y, Zhang Q (2022) A novel MABR process based on HN-AD bacteria-chlorella symbiotic system: effects of COD/TN ratios on performance, community structure, functional bacteria and key genes. J Water Process Eng 103157:2214–7144. https://doi.org/10.1016/j.jwpe.2022.103157
Zhang Q, Xue C et al (2020) Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high NH4+-N wastewater treatment. Bioresour Technol 315. https://doi.org/10.1016/j.biortech.2020.123813
Zhang QQ, Tian BH, Zhang X, Ghulam A, Fang CR, He R (2013) Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manage 33(11):2277–2286. https://doi.org/10.1016/j.wasman.2013.07.021
Zhang X (2021) Removal efficiency and biotransformation mechanism of PPCPs in landfill leachate by aerobic activated sludge. Dissertation, Peking University
Zhang ZY, Zhang Q, Lou ZY, Liu W, Zhu YN, Yuan CBY, Zhao TT (2021) Oxidation characteristics and spectroscopic analysis of RO concentrate in leachate by catalytic ozone oxidation. Chin J Chem Eng 72(10):5362–5371. https://doi.org/10.11949/0438-1157.20210400
Zhou SH, Song Z, Li ZB, Qiao RY, Li MJ, Chen YF, Guo H (2022) Mechanisms of nitrogen transformation driven by functional microbes during thermophilic fermentation in an ex situ fermentation system. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.126917
Zhu Z, Zhao Y, Zhu Y, Zhu Y, Zhang ML, Yu Y, Guo YY, Zhou T (2021) Efficient treatment of mature landfill leachate with a novel composite biological trickle reactor developed using refractory domestic waste and aged refuse. J Clean Prod 305:127194. https://doi.org/10.1016/j.jclepro.2021.127194