Trapped modes in linear quantum stochastic networks with delays

EPJ Quantum Technology - Tập 3 Số 1 - 2016
Gil Tabak1, Hideo Mabuchi2
1Department of Applied Physics, Stanford University, Stanford, USA
2Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, CA 94305, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tezak N, Niederberger A, Pavlichin DS, Sarma G, Mabuchi H. Specification of photonic circuits using quantum hardware description language. Philos Trans R Soc A, Math Phys Eng Sci. 2012;370(1979):5270-90.

Gough J, James MR. Quantum feedback networks: Hamiltonian formulation. Commun Math Phys. 2009;287(3):1109-32.

Gough J, James MR. The series product and its application to quantum feedforward and feedback networks. IEEE Trans Autom Control. 2009;54(11):2530-44.

Gough JE, Gohm R, Yanagisawa M. Linear quantum feedback networks. Phys Rev A. 2008;78:062104.

Gough JE, James MR, Nurdin HI. Squeezing components in linear quantum feedback networks. Phys Rev A. 2010;81(2):023804.

Yanagisawa M, Kimura H. Transfer function approach to quantum control - part I: dynamics of quantum feedback systems. IEEE Trans Autom Control. 2003;48(12):2107-20.

Zhang G, James MR. Quantum feedback networks and control: a brief survey. Chin Sci Bull. 2012;57(18):2200-14.

Richard JP. Time-delay systems: an overview of some recent advances and open problems. Automatica. 2003;39(10):1667-94.

Grimsmo AL. Time-delayed quantum feedback control. Phys Rev Lett. 2015;115:060402.

Pichler H, Zoller P. Photonic quantum circuits with time delays: a matrix product state approach. Preprint. arXiv:1510.04646 (2015).

Maalouf AI, Petersen IR. Coherent $H^{\infty}$ control for a class of linear complex quantum systems. In: Proceedings of the American control conference ACC; 2009.

Maalouf AI, Petersen IR. Coherent $H^{\infty}$ control for a class of annihilation-operator linear quantum systems. IEEE Trans Autom Control. 2011;56(2):309-19.

Petersen IR. Quantum linear systems theory. In: Proceedings of the 19th international symposium on mathematical theory of networks and systems. 2010.

Petersen IR. Analysis of linear quantum optical networks. Preprint. arXiv:1403.6214 (2014).

Hudson RL, Parthasarathy KR. Quantum Ito’s formula and stochastic evolutions. Commun Math Phys. 1984;93(3):301-23.

Parthasarathy KR. An introduction to quantum stochastic calculus. Basel: Birkhäuser; 1992. [Monographs in mathematics; vol. 85].

Guta M, Yamamoto N. System identification for passive linear quantum systems. Preprint. arXiv:1303.3771v2 (2014).

Potapov VP. The multiplicative structure of J-contractive matrix functions. Tr Mosk Mat Obŝ. 1955;4:125-236.

Delves LM, Lyness JN. A numerical method for locating the zeros of an analytic function. Math Comput. 1967;21:543-60.

Kravanja P, Van Barel M. Computing the zeros of analytic functions. Berlin: Springer; 2000.

Ball JA, Gohberg I, Rodman L. Tangential interpolation problems for rational matrix functions. In: Matrix theory and applications. Providence: Am. Math. Soc. 1990. p. 59-86. [Proceedings of symposia in applied mathematics; vol. 40].

Tabak G. potapov_interpolation. https://github.com/tabakg/potapov_interpolation (2016).

Fritzsche B, Katsnelson V, Kirstein B. Topics in interpolation theory. Vol. 95. Basel: Birkhäuser; 2012.

Shaiju AJ, Petersen IR. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Trans Autom Control. 2012;57(8):2033-44.

Lam J. Model reduction of delay systems using Pade approximants. Int J Control. 1993;57(2):377-91. doi: 10.1080/00207179308934394 .