Transversal homoclinic points of the Hénon map

Springer Science and Business Media LLC - Tập 185 - Trang S187-S204 - 2005
Urs Kirchgraber1, Daniel Stoffer1
1Department of Mathematics, ETH Zürich, Zürich, Switzerland

Tóm tắt

Using shadowing techniques we prove that the Hénon map $H_{a,b}(x,y)=(a-x^{2}+by,x)$ admits a transversal homoclinic point for a set of parameters which is not small. For the area and orientation preserving Hénon map (corresponding to b=-1) we prove that a transversal homoclinic point exists for a≥0.265625. Applying a computer-assisted version of our scheme we show that the result holds even for a≥-0.866. This supports an old conjecture due to Devaney and Nitecki dating back to 1979, see [4], claiming that the Hénon map in the case b=-1 admits a transversal homoclinic point for a>-1.

Tài liệu tham khảo

Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991) Brown, R.: Horseshoes in the measure–preserving Hénon map. Ergodic Theory Dyn. Syst. 15, 1045–1059 (1995) Coomes, B.A., Koçak, H., Palmer, K.J.: Descrete homoclinic shadowing. Preprint 2001 Devaney, R., Nitecki, Z.: Shift automorphismus in the Hénon map. Commun. Math. Phys. 67, 137–146 (1979) Engel, W.: Ein Satz über ganze Cremona–Transformationen in der Ebene. Math. Ann. 130, 11–19 (1955) Engel, W.: Ganze Cremona–Transformationen von Primzahlgrad in der Ebene. Math. Ann. 136, 319–325 (1958) Fontich, E.: Transversal homoclinic points of a class of conservative diffeomorphisms. J. Differ. Equations 87, 1–27 (1990) Galias, Z., Zgliczynski, P.: Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map. Nonlinearity 14, 909–932 (2001) Gelfreich, V., Sauzin, D.: Borel summation and splitting of separatrices for the Hénon map. Ann. Inst. Fourier 51, 513–567 (2001) Hénon, M.: Numerical study of quadratic area-preserving mappings. Q. Appl. Math. 27, 291–312 (1969) Hénon, M.: A two–dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976) Kirchgraber, U., Manz, U., Stoffer, D.: Rigorous proof of chaotic behaviour in a dumbbell satellite model. J. Math. Anal. Appl. 251, 897–911 (2000) Kirchgraber, U., Stoffer, D.: Possible chaotic motion of comets in the Sun–Jupiter system – a computer–assisted approach based on shadowing. Nonlinearity 17, 281–300 (2004) Palmer, K.J.: Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynamics Reported 1, pp. 265–306. New York: Wiley Teubner 1988 Pilyugin, S.Y.: Shadowing in Dynamical Systems. Lect. Notes Math., vol. 1706. Berlin, Heidelberg, New York: Springer 1999 Sterling, D., Dullin, H.R., Meiss, J.D.: Homoclinic bifurcations for the Hénon map. Physica D 134, 153–184 (1999) Stoffer, D., Palmer, K.: Rigorous verification of chaotic behaviour of maps using validated shadowing. Nonlinearity 12, 1683–1698 (1999) Stoffer, D., Kirchgraber, U.: Verification of chaotic behaviour in the planar restricted three body problem. Appl. Numer. Math. 39, 415–433 (2001) Tovbis, A., Tsuchiya, M., Jaffé, C.: Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example. Chaos 8, 665–681 (1998)