Transposable elements: genome innovation, chromosome diversity, and centromere conflict
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed M, Liang P (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012:947089. https://doi.org/10.1155/2012/947089
Alazami AM, Mejia JE, Monaco ZL (2004) Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable. Genomics 83:844–851
Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20:210–224. https://doi.org/10.1101/gad.1380406
Alkan C et al (2011) Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res 21:137–145. https://doi.org/10.1101/gr.111278.110
Alonso A et al (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148
Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KH (2004) Human centromere repositioning “in progress”. Proc Nat Acad Sci U S A 101:6542–6547. https://doi.org/10.1073/pnas.0308637101
Aravin AA, Klenov MS, Vagin VV, Bantignies F, Cavalli G, Gvozdev VA (2004) Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol Cell Biol 24:6742–6750. https://doi.org/10.1128/MCB.24.15.6742-6750.2004
Bagijn MP et al (2012) Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337:574–578. https://doi.org/10.1126/science.1220952
Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73:823–834. https://doi.org/10.1086/378594
Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12(1):187–215. https://doi.org/10.1146/annurev-genom-082509-141802
Belshaw R, Dawson AL, Woolven-Allen J, Redding J, Burt A, Tristem M (2005) Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 79:12507–12514. https://doi.org/10.1128/JVI.79.19.12507-12514.2005
Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Nat Acad Sci U S A 101:4894–4899. https://doi.org/10.1073/pnas.0307800101
Bergmann JH et al (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125:411–421. https://doi.org/10.1242/jcs.090639
Bergmann JH et al (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340. https://doi.org/10.1038/emboj.2010.329
Birchler JA, Presting GG (2012) Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes Dev 26:638–640. https://doi.org/10.1101/gad.191049.112
Boller K, Konig H, Sauter M, Mueller-Lantzsch N, Lower R, Lower J, Kurth R (1993) Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196:349–353. https://doi.org/10.1006/viro.1993.1487
Brown JD, Mitchell SE, O'Neill RJ (2012) Making a long story short: noncoding RNAs and chromosome change. Heredity (Edinb) 108:42–49. https://doi.org/10.1038/hdy.2011.104
Brown JD, O'Neill RJ (2010) Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 11:291–316. https://doi.org/10.1146/annurev-genom-082509-141554
Bulazel K, Ferreri GC, Eldridge MD, O'Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:R170
Bulazel K, Metcalfe C, Ferreri GC, Yu J, Eldridge MD, O'Neill RJ (2006) Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome. Genetics 172:1129–1137. https://doi.org/10.1534/genetics.105.047654
Burns KH (2017) Transposable elements in cancer. Nat Rev Cancer 17:415–424. https://doi.org/10.1038/nrc.2017.35
Byun HM, Heo K, Mitchell KJ, Yang AS (2012) Mono-allelic retrotransposon insertion addresses epigenetic transcriptional repression in human genome. J Biomed Sci 19:13. https://doi.org/10.1186/1423-0127-19-13
Carbone L, Alan Harris R, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B, Anaclerio F, Archidiacono N, Baker C, Barrell D, Batzer MA, Beal K, Blancher A, Bohrson CL, Brameier M, Campbell MS, Capozzi O, Casola C, Chiatante G, Cree A, Damert A, de Jong PJ, Dumas L, Fernandez-Callejo M, Flicek P, Fuchs NV, Gut I, Gut M, Hahn MW, Hernandez-Rodriguez J, Hillier LDW, Hubley R, Ianc B, Izsvák Z, Jablonski NG, Johnstone LM, Karimpour-Fard A, Konkel MK, Kostka D, Lazar NH, Lee SL, Lewis LR, Liu Y, Locke DP, Mallick S, Mendez FL, Muffato M, Nazareth LV, Nevonen KA, O’Bleness M, Ochis C, Odom DT, Pollard KS, Quilez J, Reich D, Rocchi M, Schumann GG, Searle S, Sikela JM, Skollar G, Smit A, Sonmez K, Hallers B, Terhune E, Thomas GWC, Ullmer B, Ventura M, Walker JA, Wall JD, Walter L, Ward MC, Wheelan SJ, Whelan CW, White S, Wilhelm LJ, Woerner AE, Yandell M, Zhu B, Hammer MF, Marques-Bonet T, Eichler EE, Fulton L, Fronick C, Muzny DM, Warren WC, Worley KC, Rogers J, Wilson RK, Gibbs RA (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513(7517):195–201. https://doi.org/10.1038/nature13679
Carbone L et al (2012) Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol 4:648–658. https://doi.org/10.1093/gbe/evs048
Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O’Neill MJ, O’Neill RJ (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118(1):113–125. https://doi.org/10.1007/s00412-008-0181-5
Carone DM, Zhang C, Hall LE, Obergfell C, Carone BR, O'Neill MJ, O'Neill RJ (2013) Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosom Res 21:49–62. https://doi.org/10.1007/s10577-013-9337-0
Chen CC et al (2015) Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev Cell 34:73–84. https://doi.org/10.1016/j.devcel.2015.05.012
Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KH, Wong LH (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5:e1000354. https://doi.org/10.1371/journal.pgen.1000354
Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86. https://doi.org/10.1038/nrg.2016.139
Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114. https://doi.org/10.1016/j.gene.2009.06.020
Colnaghi R, Carpenter G, Volker M, O'Driscoll M (2011) The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin Cell Dev Biol 22:875–885. https://doi.org/10.1016/j.semcdb.2011.07.010
Contreras-Galindo R et al (2013) HIV infection reveals widespread expansion of novel centromeric human endogenous retroviruses. Genome Res 23:1505–1513. https://doi.org/10.1101/gr.144303.112
Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703. https://doi.org/10.1038/nrg2640
Dai L, LaCava J, Taylor MS, Boeke JD (2014) Expression and detection of LINE-1 ORF-encoded proteins. Mob Genet Elements 4:e29319. https://doi.org/10.4161/mge.29319
Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67(3):183–193. https://doi.org/10.1006/mgme.1999.2864
Denli AM et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163:583–593. https://doi.org/10.1016/j.cell.2015.09.025
Dewannieux M, Blaise S, Heidmann T (2005) Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. J Virol 79:15573–15577. https://doi.org/10.1128/JVI.79.24.15573-15577.2005
Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48. https://doi.org/10.1038/ng1223
Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16:1548–1556. https://doi.org/10.1101/gr.5565706
Dias GB, Svartman M, Delprat A, Ruiz A, Kuhn GC (2014) Tetris provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biol Evol 6:1302–1313. https://doi.org/10.1093/gbe/evu108
Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C, Sverdlov ED (2000) Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 472:191–195
Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603
Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299(5879):111–117. https://doi.org/10.1038/299111a0
Emanuel BS, Shaikh TH (2001) Segmental duplications: an ‘expanding’ role in genomic instability and disease. Nat Rev Genet 2(10):791–800. https://doi.org/10.1038/35093500
Emmons SW, Yesner L, Ruan KS, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32:55–65
Fanning T, Singer M (1987a) The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res 15:2251–2260
Fanning TG, Singer MF (1987b) LINE-1: a mammalian transposable element. Biochim Biophys Acta 910:203–212
Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O'Neill RJ (2005) Retention of latent centromeres in the mammalian genome. J Hered 96:217–224. https://doi.org/10.1093/jhered/esi029
Ferreri GC, Marzelli M, Rens W, O'Neill RJ (2004) A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials. Cytogenet Genome Res 107:115–118. https://doi.org/10.1159/000079580
Fontdevila A (2005) Hybrid genome evolution by transposition. Cytogenet Genome Res 110:49–55. https://doi.org/10.1159/000084937
Gent JI, Wang N, Dawe RK (2017) Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biol 18:121. https://doi.org/10.1186/s13059-017-1249-4
Gilbert N, Lutz S, Morrish TA, Moran JV (2005) Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 25:7780–7795. https://doi.org/10.1128/MCB.25.17.7780-7795.2005
Gong Z et al (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574. https://doi.org/10.1105/tpc.112.100511
Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35. https://doi.org/10.1016/j.cell.2008.09.022
Guerra M, Cabral G, Cuacos M, Gonzalez-Garcia M, Gonzalez-Sanchez M, Vega J, Puertas MJ (2010) Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res 129:82–96. https://doi.org/10.1159/000314289
Hackett JA et al (2012) Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development 139:3623–3632. https://doi.org/10.1242/dev.081661
Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA (2008) L1 recombination-associated deletions generate human genomic variation. Proc Nat Acad Sci U S A 105:19366–19371. https://doi.org/10.1073/pnas.0807866105
Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203. https://doi.org/10.1016/j.gde.2012.02.006
Hancks DC, Kazazian HH Jr (2016) Roles for retrotransposon insertions in human disease. Mob DNA 7:9. https://doi.org/10.1186/s13100-016-0065-9
Hasson D, Alonso A, Cheung F, Tepperberg JH, Papenhausen PR, Engelen JJ, Warburton PE (2011) Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 120:621–632. https://doi.org/10.1007/s00412-011-0337-6
Hasson D et al (2013) The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat Struct Mol Biol 20:687–695. https://doi.org/10.1038/nsmb.2562
Henikoff S, Ahmad K, Malik H (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102. https://doi.org/10.1126/science.1062939
Henikoff S, Malik HS (2002) Centromeres: selfish drivers. Nature 417:227. https://doi.org/10.1038/417227a
Horman SR, Svoboda P, Luning Prak ET (2006) The potential regulation of L1 mobility by RNA interference. J Biomed Biotechnol 2006:32713. https://doi.org/10.1155/JBB/2006/32713
Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675. https://doi.org/10.1146/annurev-genet-110711-155616
Hughes JF, Coffin JM (2004) Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Nat Acad Sci U S A 101:1668–1672. https://doi.org/10.1073/pnas.0307885100
Ikeda Y, Nishimura T (2015) The role of DNA methylation in transposable element silencing and genomic imprinting. In: Pontes O, Jin H (eds) Nuclear functions in plant transcription. Signaling and Development. Springer New York, New York, pp 13–29
Jacobs FM et al (2014) An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:242–245. https://doi.org/10.1038/nature13760
Johnson ME, Rowsey RA, Shirley S, Vandevoort C, Bailey J, Hassold T (2013) A specific family of interspersed repeats (SINEs) facilitates meiotic synapsis in mammals. Mol Cytogenet 6(1):1. https://doi.org/10.1186/1755-8166-6-1
Kalmykova AI, Klenov MS, Gvozdev VA (2005) Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res 33:2052–2059. https://doi.org/10.1093/nar/gki323
Kang MI, Rhyu MG, Kim YH, Jung YC, Hong SJ, Cho CS, Kim HS (2006) The length of CpG islands is associated with the distribution of Alu and L1 retroelements. Genomics 87:580–590. https://doi.org/10.1016/j.ygeno.2006.01.002
Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496
Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Gen Genomics 272:593–602. https://doi.org/10.1007/s00438-004-1081-x
Kazazian HH Jr, Moran JV (2017) Mobile DNA in health and disease. N Engl J Med 377:361–370. https://doi.org/10.1056/NEJMra1510092
Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166. https://doi.org/10.1038/332164a0
Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–141
Kuznetsova I, Podgornaya O, Ferguson-Smith MA (2006) High-resolution organization of mouse centromeric and pericentromeric DNA. Cytogenet Genome Res 112:248–255
Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062
Lavie L, Maldener E, Brouha B, Meese EU, Mayer J (2004) The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res 14:2253–2260. https://doi.org/10.1101/gr.2745804
Lee J, Han K, Meyer TJ, Kim HS, Batzer MA (2008) Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons. PLoS One 3:e4047. https://doi.org/10.1371/journal.pone.0004047
Leupin O, Attanasio C, Marguerat S, Tapernoux M, Antonarakis SE, Conrad B (2005) Transcriptional activation by bidirectional RNA polymerase II elongation over a silent promoter. EMBO Rep 6:956–960. https://doi.org/10.1038/sj.embor.7400502
Lippman Z et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476. https://doi.org/10.1038/nature02651
Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457
Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19:3822–3830. https://doi.org/10.1093/emboj/19.14.3822
Longo MS, Carone DM, Green ED, O'Neill MJ, O'Neill RJ (2009) Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty. BMC Genomics 10:334. https://doi.org/10.1186/1471-2164-10-334
Lower R, Boller K, Hasenmaier B, Korbmacher C, Muller-Lantzsch N, Lower J, Kurth R (1993) Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Nat Acad Sci U S A 90:4480–4484
Lower R, Tonjes RR, Korbmacher C, Kurth R, Lower J (1995) Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. J Virol 69:141–149
Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718
Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138:1067–1082. https://doi.org/10.1016/j.cell.2009.08.036
Maloney KA, Sullivan LL, Matheny JE, Strome ED, Merrett SL, Ferris A, Sullivan BA (2012) Functional epialleles at an endogenous human centromere. Proc Nat Acad Sci U S A 109:13704–13709. https://doi.org/10.1073/pnas.1203126109
Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, Fontes MR, Marino CL (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15:198. https://doi.org/10.1186/s12870-015-0550-1
Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282. https://doi.org/10.1016/j.ajhg.2007.11.009
Martens JH, O'Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24:800–812. https://doi.org/10.1038/sj.emboj.7600545
May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLOS Genet 1:e79
McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Nat Acad Sci U S A 36:344–355
McLaughlin RN Jr, Malik HS (2017) Genetic conflicts: the usual suspects and beyond. J Exp Biol 220:6–17. https://doi.org/10.1242/jeb.148148
Mejia JE, Alazami A, Willmott A, Marschall P, Levy E, Earnshaw WC, Larin Z (2002) Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 79:297–304
Melters DP et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10. https://doi.org/10.1186/gb-2013-14-1-r10
Mestrovic N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Satovic E, Plohl M (2015) Structural and functional liaisons between transposable elements and satellite DNAs. Chromosom Res 23:583–596. https://doi.org/10.1007/s10577-015-9483-7
Metcalfe CJ et al (2007) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177:2507–2517. https://doi.org/10.1534/genetics.107.082313
Meyer TJ, Held U, Nevonen KA, Klawitter S, Pirzer T, Carbone L, Schumann GG (2016) The flow of the gibbon LAVA element is facilitated by the LINE-1 retrotransposition machinery. Genome Biol Evol 8:3209–3225. https://doi.org/10.1093/gbe/evw224
Miga KH (2015) Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosom Res 23:421–426. https://doi.org/10.1007/s10577-015-9488-2
Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ (2014) Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res 24(4):697–707. https://doi.org/10.1101/gr.159624.113
Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23(4):183–191. https://doi.org/10.1016/j.tig.2007.02.006
Morrish TA et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165. https://doi.org/10.1038/ng898
Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855. https://doi.org/10.1093/molbev/msi069
Nakano M et al (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522
Nakano M, Okamoto Y, Ohzeki J, Masumoto H (2003) Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 116(19):4021–4034. https://doi.org/10.1242/jcs.00697
Narita N et al (1993) Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91:1862–1867. https://doi.org/10.1172/JCI116402
Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761. https://doi.org/10.1534/genetics.107.071902
O'Neill RJ, Carone DM (2009) The role of ncRNA in centromeres: a lesson from marsupials. Prog Mol Subcell Biol 48:77–101. https://doi.org/10.1007/978-3-642-00182-6_4
O'Neill RJ, Eldridge MD, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95:375–381. https://doi.org/10.1093/jhered/esh063
O'Neill RJ, O'Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72
Okamoto Y, Nakano M, Ohzeki J, Larionov V, Masumoto H (2007) A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26:1279–1291
Ono M (1990) Molecular biology of type A endogenous retrovirus. Kitasato Arch Exp Med 63:77–90
Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73:1444–1451. https://doi.org/10.1086/380207
Panning B, Smiley JR (1993) Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 13:3231–3244
Phillips CM, Brown KC, Montgomery BE, Ruvkun G, Montgomery TA (2015) piRNAs and piRNA-dependent siRNAs protect conserved and essential C. elegans genes from misrouting into the RNAi pathway. Dev Cell 34:457–465. https://doi.org/10.1016/j.devcel.2015.07.009
Piras FM et al (2010) Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet 6:e1000845. https://doi.org/10.1371/journal.pgen.1000845
Quenet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife 3:e03254. https://doi.org/10.7554/eLife.03254
Quentin Y (1992) Origin of the Alu family: a family of Alu-like monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res 20:3397–3401
Raiz J et al (2012) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40:1666–1683. https://doi.org/10.1093/nar/gkr863
Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432. https://doi.org/10.1038/nature05918
Rishishwar L, Tellez Villa CE, Jordan IK (2015) Transposable element polymorphisms recapitulate human evolution. Mob DNA 6:21. https://doi.org/10.1186/s13100-015-0052-6
Rogers RL (2015) Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans. Mol Biol Evol 32:3064–3078. https://doi.org/10.1093/molbev/msv204
Rosenbloom KR et al (2015) The UCSC genome browser database: 2015 update. Nucleic Acids Res 43:D670–D681. https://doi.org/10.1093/nar/gku1177
Rosenzweig B, Liao LW, Hirsh D (1983) Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res 11(12):4201–4209. https://doi.org/10.1093/nar/11.12.4201
Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349. https://doi.org/10.1083/jcb.201404097
Rowe HM et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240. https://doi.org/10.1038/nature08674
Roy-Engel AM et al (2002) Active Alu element “A-tails”: size does matter. Genome Res 12:1333–1344. https://doi.org/10.1101/gr.384802
Ruiz-Herrera A, Castresana J, Robinson TJ (2006) Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 7:R115
Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M, Ramos-Onsins SE, Garcia-Mas J, Casacuberta JM (2015) Transposon insertions, structural variations, and SNPs contribute to the evolution of the melon genome. Mol Biol Evol 32(10):2760–2774. https://doi.org/10.1093/molbev/msv152
Satovic E, Vojvoda Zeljko T, Luchetti A, Mantovani B, Plohl M (2016) Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics 17:997. https://doi.org/10.1186/s12864-016-3347-1
Sawada I, Willard C, Shen CK, Chapman B, Wilson AC, Schmid CW (1985) Evolution of Alu family repeats since the divergence of human and chimpanzee. J Mol Evol 22:316–322
Schneider KL, Xie Z, Wolfgruber TK, Presting GG (2016) Inbreeding drives maize centromere evolution. Proc Nat Acad Sci U S A 113:E987–E996. https://doi.org/10.1073/pnas.1522008113
Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115
Scott KC, Sullivan BA (2014) Neocentromeres: a place for everything and everything in its place. Trends Genet 30:66–74. https://doi.org/10.1016/j.tig.2013.11.003
Sen SK et al (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79:41–53. https://doi.org/10.1086/504600
Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310–314. https://doi.org/10.1038/nature02107
Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258. https://doi.org/10.1038/nrm3089
Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. https://doi.org/10.1038/nrg2072
Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. Proc Nat Acad Sci U S A 93:1443–1448
Sotero-Caio CG, Platt RN 2nd, Suh A, Ray DA (2017) Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol Evol 9:161–177. https://doi.org/10.1093/gbe/evw264
Subramanian RP, Wildschutte JH, Russo C, Coffin JM (2011) Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8:90. https://doi.org/10.1186/1742-4690-8-90
Sultana T, Zamborlini A, Cristofari G, Lesage P (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 18:292–308. https://doi.org/10.1038/nrg.2017.7
Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, Boeke JD (2002) Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338
Taniguchi-Ikeda M et al (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478:127–131. https://doi.org/10.1038/nature10456
Ting DT et al (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596. https://doi.org/10.1126/science.1200801
Tolomeo D et al (2017) Epigenetic origin of evolutionary novel centromeres. Sci Rep 7:41980. https://doi.org/10.1038/srep41980
Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Nat Acad Sci U S A 101:15986–15991
Tsukahara S et al (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713. https://doi.org/10.1101/gad.183871.111
Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039. https://doi.org/10.1038/sj.embor.7400558
Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA (2004) The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol 1:54–58
Van Valen L (1973) A new evolutionary law evolutionary. Theory 1:1–30
Vogt J et al (2014) SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol 15:R80. https://doi.org/10.1186/gb-2014-15-6-r80
Voineagu I, Narayanan V, Lobachev KS, Mirkin SM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Nat Acad Sci U S A 105:9936–9941. https://doi.org/10.1073/pnas.0804510105
Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354:994–1007. https://doi.org/10.1016/j.jmb.2005.09.085
Wang L, Norris ET, Jordan IK (2017a) Human retrotransposon insertion polymorphisms are associated with health and disease via gene regulatory phenotypes. Front Microbiol 8:1418. https://doi.org/10.3389/fmicb.2017.01418
Wang L, Rishishwar L, Marino-Ramirez L, Jordan IK (2017b) Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements. Nucleic Acids Res 45:2318–2328. https://doi.org/10.1093/nar/gkw1286
Warburton PE et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904
Wimmer K, Callens T, Wernstedt A, Messiaen L (2011) The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet 7:e1002371. https://doi.org/10.1371/journal.pgen.1002371
Wolf G, Greenberg D, Macfarlan TS (2015) Spotting the enemy within: targeted silencing of foreign DNA in mammalian genomes by the Kruppel-associated box zinc finger protein family. Mob DNA 6:17. https://doi.org/10.1186/s13100-015-0050-8
Wong LH, Choo KH (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616. https://doi.org/10.1016/j.tig.2004.09.011
Yamagata K, Yamazaki T, Miki H, Ogonuki N, Inoue K, Ogura A, Baba T (2007) Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages. Dev Biol 312:419–426. https://doi.org/10.1016/j.ydbio.2007.09.041
Yan H et al (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238
Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340
Zahn J et al (2015) Expansion of a novel endogenous retrovirus throughout the pericentromeres of modern humans. Genome Biol 16:74. https://doi.org/10.1186/s13059-015-0641-1
Zedek F, Bures P (2012) Evidence for centromere drive in the holocentric chromosomes of Caenorhabditis. PLoS One 7(1):e30496. https://doi.org/10.1371/journal.pone.0030496
Zhang H, Kobli kova A, Wang K, Gong Z, Oliveira L, Torres GA, Wu Y, Zhang W, Novak P, Buell CR, Macas J, Jiang J (2014) Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. Plant Cell 26(4):1436–1447. https://doi.org/10.1105/tpc.114.123877