Transportation cost for Gaussian and other product measures

Michel Talagrand1,2
1Department of Mathematics, Ohio State University, Columbus, USA
2Equipe d'Analyse-Tour 56 E.R.A. au C.N.R.S. no. 754, Université Paris VI, Paris Cedex 05, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Bickel, D. Freedman, Some asymptotic theory for the bootstrap, Ann. Statist. 9 (1981), 1196–1217.

M. Ledoux, Inegalités isopérimétriques en analyse et probabilités, Astérisque 216 (1993), 363–375.

C.L. Mallows, A note on asymptotic normality, Ann. Math. Statist. 43 (1972), 508–515.

K. Marton, A simple proof of the blowing-up lemma, IEEE Trans. on Information Theory IT-32 (1986), 445–446.

K. Marton, Inequalities betweend-distance and informational divergence, preprint, 1994.

K. Marton, A measure concentration inequality for contracting Markov chains, Geometric And Functional Analysis 6, this issue.

B. Maurey, Some deviation inequalities, Geometric And Functional Analysis 1, 1991, 188–197.

S.T. Rachev, The Monge-Kantorovich mass transference problem, Theor. Prob. Appl. XXIX (1985), 647–676.

M. Talagrand, A new isoperimetric inequality for product measure and the concentration of measure phenomenon, Israel Seminar (GAFA), Springer Verlag Lecture Notes in Math. 1469, (1991) 94–124.

M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publications I.H.E.S. 81 (1995), 73–205.

H. Tanaka, An inequality for a functional of probability distribution and its application to Koc's one-dimensional model of a Maxwellian gas, Z. Warsch. verw. Gebiete 27 (1973), 47–52.