Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi

Juan F. Martı́n1
1Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain

Tóm tắt

Abstract

Fungal secondary metabolites are synthesized by complex biosynthetic pathways catalized by enzymes located in different subcellular compartments, thus requiring traffic of precursors and intermediates between them. The β-lactam antibiotics penicillin and cephalosporin C serve as an excellent model to understand the molecular mechanisms that control the subcellular localization of secondary metabolites biosynthetic enzymes. Optimal functioning of the β-lactam biosynthetic enzymes relies on a sophisticated temporal and spatial organization of the enzymes, the intermediates and the final products. The first and second enzymes of the penicillin pathway, ACV synthetase and IPN synthase, in Penicillium chrysogenum and Aspergillus nidulans are cytosolic. In contrast, the last two enzymes of the penicillin pathway, phenylacetyl-CoA ligase and isopenicillin N acyltransferase, are located in peroxisomes working as a tandem at their optimal pH that coincides with the peroxisomes pH. Two MFS transporters, PenM and PaaT have been found to be involved in the import of the intermediates isopenicillin N and phenylacetic acid, respectively, into peroxisomes. Similar compartmentalization of intermediates occurs in Acremonium chrysogenum; two enzymes isopenicillin N-CoA ligase and isopenicillin N-CoA epimerase, that catalyse the conversion of isopenicillin N in penicillin N, are located in peroxisomes. Two genes encoding MFS transporters, cefP and cefM, are located in the early cephalosporin gene cluster. These transporters have been localized in peroxisomes by confocal fluorescence microscopy. A third gene of A. chrysogenum, cefT, encodes an MFS protein, located in the cell membrane involved in the secretion of cephalosporin C, although cefT-disrupted mutants are still able to export cephalosporin by redundant transporters. The secretion of penicillin from peroxisomes to the extracellular medium is still unclear. Attempts have been made to identify a gene encoding the penicillin secretion protein among the 48 ABC-transporters of P. chrysogenum. The highly efficient secretion system that exports penicillin against a concentration gradient may involve active penicillin extrusion systems mediated by vesicles that fuse to the cell membrane. However, there is no correlation of pexophagy with penicillin or cephalosporin formation since inactivation of pexophagy leads to increased penicillin or cephalosporin biosynthesis due to preservation of peroxisomes. The penicillin biosynthesis finding shows that in order to increase biosynthesis of novel secondary metabolites it is essential to adequately target enzymes to organelles.

Từ khóa


Tài liệu tham khảo

Abenza JF, Pantazopoulou A, Rodríguez JM, Galindo A, Peñalva MA. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic. 2009;10:57–75.

Aharonowitz Y, Cohen G, Martín JF. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Ann Rev Microbiol. 1992;46:461–95.

Alonso MJ, Bermejo F, Reglero A, Fernández-Cañón JM, González de Buitrago G, Luengo JM. Enzymatic synthesis of penicillins. J Antibiot (Tokyo). 1988;41:1074–84.

Álvarez E, Cantoral JM, Barredo JL, Díez B, Martín JF. Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother. 1987;31:1675–82.

Álvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Díez B, Barredo JL, Martín JF. The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur J Biochem. 1993;1993(215):323–32.

Andrade AC, van Nistelrooy JGM, Peery RB, Skatrud PL, De Waard MA. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet. 2000;263:966–77.

Antonenkov VD, Hiltunen JK. Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta. 2012;1822:1374–86.

Aplin RT, Baldwin JE, Roach PL, Robinson CV, Schofield CJ. Investigations into the post-translational modification and mechanism of isopenicillin N: acyl-CoA acyltransferase using electrospray mass spectrometry. Biochem J. 1993;294:357–63.

Awan AR, Blount BA, Bell DJ, Shaw WM, Ho JCH, McKiernan RM, et al. Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker´syeast. Nat Commun. 2017;8:15202.

Baldwin JE, Bird JW, Field RA, O’Callaghan NM, Schofield CJ, Willis AC. Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase. J Antibiot (Tokyo). 1991;44:241–8.

Barredo JL, van Solingen P, Díez B, Álvarez E, Cantoral JM, Kattevilder A, et al. Cloning and characterization of the acyl-coenzyme A:6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene. 1989;83:291–300.

Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ. Autophagy deficiency promotes β-lactam production in Penicillium chrysogenum. Appl Environ Microbiol. 2011;77:1413–22.

Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science. 2008;320:1504–6.

Brakhage AA, Spröte P, Al-Abdallah Q, Gehrke A, Plattner H, Tüncher A. Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol. 2004;88:45–90.

Caballero-Ortíz S, Trienens M, Rohlfs M. Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLoSONE. 2013;8:e74951.

Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, Raikhel NV, et al. A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci USA. 2009;106:19533–8.

Chanda A, Roze LV, Pastor A, Frame MK, Linz JE. Purification of a vesicle-vacuole fraction functionally linked to aflatoxin synthesis in Aspergillus parasiticus. J Microbiol Methods. 2009;78:28–33.

Chanda A, Roze LV, Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell. 2010;9:1724–7.

Chen C, He J, Gao W, Wei Y, Liu G. Identification and characterization of an autophagy-related gene Acatg12 in Acremonium chrysogenum. Curr Microbiol. 2019;76:545–51.

Davies J. Specialyzed microbial metabolites: functions and origins. J Antibiot (Tokyo). 2013;66:361–4.

Demain AL. Valuable secondary metabolites from fungi. In: Martín JF, García-Estrada C, Zeilinger S, editors. Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 1–16.

Díez B, Gutiérrez S, Barredo JL, van Solingen P, van der Voort LHM, Martín JF. The cluster of penicillin biosynthetic genes. J Biol Chem. 1990;265:16358–65.

Dixon RA, Steele CL. Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci. 1999;4:394.

Dotzlaf JE, Yeh WK. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J Bacteriol. 1987;169:1611–8.

Douma RD, Deshmukh AT, de Longe LP, de Jong BW, Seifar RM, Heijnen JJ, et al. Novel insight in transport mechanisms and kinetics of phenylacetic acid and penicillin G in Penicillium chrysogenum. Biotechnol Prog. 2012;28:337–48.

Fernández FJ, Cardoza RE, Montenegro E, Velasco J, Gutiérrez S, Martín JF. The isopenicillin N acyltransferase of Aspergillus nidulans and Penicillium chrysogenum differ in their ability to maintain the 40 kDa αβ heterodimer in an undissociated form. Eur J Biochem. 2003;270:1958–68.

Fernández-Aguado M, Teijeira F, Martín JF, Ullán RV. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl Microbiol Biotechnol. 2013;97:795–808.

Fernández-Aguado M, Ullán RV, Teijeira F, Rodríguez-Castro R, Martín JF. The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Appl Microbiol Biotechnol. 2013;97:3073–84.

Fernández-Aguado M, Martín JF, Rodríguez-Castro R, García-Estrada C, Albillos SM, Teijeira F, Ullán RV. New insights into the isopenicillin N transport in Penicillium chrysogenum. Metab Eng. 2014;22:89–103.

Ferrer-Sevillano F, Fernández-Cañón JM. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities. Eukaryot Cell. 2007;6:514–20.

García-Estrada C, Vaca I, Lamas-Maceiras M, Martín JF. In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Appl Microbiol Biotechnol. 2007;76:169–82.

García-Estrada C, Vaca I, Fierro F, Sjollema K, Veenhuis M, Martín JF. The unprocessable isopenicillin N acyltransferase (IATC103S) of Penicillium chrysogenum is located into peroxisomes and regulates the processing of the wild-type preprotein. Fungal Genet Biol. 2008;45:1043–52.

García-Estrada C, Ullán RV, Velasco-Conde T, Godio RP, Teijeira F, Vaca I, et al. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem J. 2008;415:317–24.

García-Estrada C, Vaca I, Ullan RV, van den Berg M, Bovenberg RAL, Martín JF. Molecular charcaterization of a fungal gene paralogue of the penicillin penDE gene of Penicillium chrysogenum. BMC Microbiol. 2009;9:104.

García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, et al. A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol. 2011;18:1499–512.

García-Estrada C, Domínguez-Santos R, Kosalkova K, Martín JF. Transcriptional factors controlling primary and secondary metabolism in filamentous fungi: the β-lactam paradigm. Fermentation. 1918;4:47–74.

Gidijala L, Kiel JA, Douma RD, Seifar RM, van Gulik WM, Bovenberg RA, Veenhuis M, van der Klei IJ. An engineered yeast efficiently secreting penicillin. PLoS ONE. 2009;4:e8317.

Gutiérrez S, Díez B, Montenegro E, Martín JF. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol. 1991;173:2354–65.

Gutiérrez S, Velasco J, Fernández FJ, Martín JF. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J Bacteriol. 1992;1992(174):3056–64.

Gutiérrez S, Fierro F, Casqueiro J, Martín JF. Gene organization and plasticity of the β-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek. 1999;75:81–94.

Herr A, Fischer R. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab Eng. 2014;25:131–9.

Hillenga DJ, Versantvoort H, van der Molen S, Driessen A, Konings WN. Penicillium chrysogenum takes up the penicillin G precursor phenylacetic acid by passive diffusion. Appl Environ Microbiol. 1995;61:2589–95.

Horio T, Oakley BR. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell. 2005;16:918–26.

Hyde KD, Rapior S, Xu J, Jeewon R. The amazing potential of fungi: 50 forms we can exploit fungi industrially. Fungal Divers. 2019;97:1–136.

Jami MS, Martín JF, Barreiro C, Domínguez-Santos R, Vasco-Cárdenas MF, Pascual M, García-Estrada C. Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor. J Proteomics. 2018;2018(187):243–59.

Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol. 2005;8:280–91.

Keller NP, Turner G, Bennett JW. Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol. 2005;3:937–47.

Keller NP. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol. 2015;11:671–7.

Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M. Overproduction of a single protein, Pc-Pcx11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol. 2005;42:154–64.

Kiel JA, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. TraYc. 2006;7:1291–303.

Kiel JA, van den Berg MA, Fusetti F, Poolman B, Bovenberg RA, Veenhuis M, van der Klei IJ. Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics. 2009;9:167–84.

Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. Front Microbiol. 2015;6:68.

Klionsky DJ, Herman PK, Emr SD. The fungal vacuole—composition, function, and biogenesis. Microbiol Rev. 1990;54:266–92.

Klionsky DJ. Nonclassical protein sorting to the yeast vacuole. J Biol Chem. 1998;273:10807–10.

Koetsier MJ, Jekel PA, van den Berg MA, Bovenberg RA, Janssen DB. Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum. Biochem J. 2010;417:467–76.

Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín JF. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie. 2009;91:214–25.

Kurylowicz W, Kurzatkowski W, Woznicka W, Polowniak-Pracka H, Paskiewicz A, Luba J, Piorunowski J. Atlas of ultrastructre of Penicillium chrysogenum in course of biosynthesis of penicillin Warsaw. Chicago: Chemia; 1980.

Kurzatkowski W, Kuczerowska AG. Pexophagy in Penicillin G Secretion by Penicillium chrysogenum PQ-96. Polish J of Microbiol. 2016;65:365–8.

Lamas-Maceiras M, Vaca I, Rodríguez E, Casqueiro J, Martín JF. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N acyltransferase. Biochem J. 2006;395:147–55.

Lee LW, Chiou CH, Klomparens KL, Cary JW, Linz JE. Subcellular localization of aflatoxin biosynthetic enzymes Nor-1, Ver-1, and OmtA in time-dependent fractionated colonies of Aspergillus parasiticus. Arch Microbiol. 2004;181:204–14.

Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. J Biol Chem. 1993;268:665–71.

Li H, Hu P, Wang Y, Pan Y, Liu G. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum. Microb Cell Fact. 2018;17(1):175–87.

Lim FY, Keller NP. Spatial and temporal control of fungal natural product synthesis. Nat Prod Rep. 2014;31:1277–86.

Linz JE, Wee JM, Roze LV. Aflatoxin biosynthesis: regulation and subcellular localization. In: Martín JF, García-Estrada C, Zeilinger S, editors. Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 89–110.

Liu J, Hao T, Hu P, Pan Y, Jiang X, Liu G. Functional analysis of the selective autophagy related gene Acatg11 in Acremonium chrysogenum. Fungal Genet Biol. 2017;107:67–76.

López-Nieto MJ, Ramos FR, Luengo JM, Martín JF. Characterization of the biosynthesis in vivo of α-aminoadipyl-cysteinyl-valine in Penicillium chrysogenum. Appl Microbiol Biotechnol. 1985;22:343–51.

Luengo JM, Domínguez A, Cantoral JM, Martín JF. Formation of bulges associated with penicillin production in high–producing strains of Penicillium chrysogenum. Curr Microbiol. 1986;13:203–7.

Martín JF, Casqueiro J, Kosalkova K, Marcos AT, Gutiérrez S. Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek. 1999;75:21–31.

Martín JF. α-Aminoadipyl-cysteinyl-valine synthetases in β-lactam producing organisms. From Abraham’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot. 2000;53:1008–21.

Martín JF. Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol. 2000;182:2355–62.

Martín JF, Ullán RV, Casqueiro FJ. Novel genes involved in cephalosporin biosynthesis: The three-component isopenicillin N epimerase system. In: Brakhage A, editor. Advances in biochemical engineering-biotechnology. Berlin: Springer; 2004. p. 91–109.

Martín JF, Ullán RV, García-Estrada C. Regulation and compartmentalization of β-lactam biosynthesis. Microb Biotechnol. 2010;3:285–99.

Martín JF, Ullán RV, García-Estrada C. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites. J Ind Microbiol Biotechnol. 2012;39:367–82.

Martín JF, García-Estrada C, Ullán RV. Transport of substrates into peroxisomes: the paradigm of β -lactam biosynthetic intermediates. Biomol Concepts. 2013;4:197–211.

Martín JF, Liras P. Insights into the structure and molecular mechanisms of β-lactam synthesizing enzymes in fungi. In: Brahmachati G, Demain AL, Adrio JL, editors. Biotechnology of Microbial Enzymes. NewYork: Elsevier; 2017. p. 215–41.

Martín JF. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways. J Ind Microbiol Biotechnol. 2017;44:525–35.

Martín JF, van den Berg MA, Ver Loren van Themaat E, Liras P. Sensing and transduction of nutritional and chemical signals in filamentous fungi: impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv. 2019;37:107392.

Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, et al. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol. 2010;76:5702–9.

Mingot JM, Peñalva MA, Fernández-Cañón JM. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem. 1999;274:14545–50.

Montenegro E, Fierro F, Fernández FJ, Gutiérrez S, Martín JF. Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases). J Bacteriol. 1992;174:7063–7.

Müller WH, van der Krift TP, Krouwer AJ, Wösten HA, van der Voort LH, Smaal EB, et al. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J. 1991;10:489–95.

Müller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, Van der Voort LH, et al. Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta. 1992;1116:210–3.

Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RA, Driessen AJ. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol. 2008;45:1415–21.

Paul GC, Thomas CR. A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol Bioeng. 1996;51:558–72.

Peñalva MA. Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol. 2005;42:963–75.

Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi. Fungal Genet Biol. 2009;46:1–8.

Revilla G, Ramos FR, López-Nieto MJ, Álvarez E, Martín JF. Glucose represses formation of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol. 1986;168:947–52.

Rodríguez-Sáiz M, Barredo JL, Moreno MA, Fernández-Cañón JM, Peñalva MA, Díez B. Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J Bacteriol. 2001;183:5465–71.

Rodríguez-Sáiz M, Díez B, Barredo JL. Why did the Fleming strain fail in penicillin industry? Fungal Genet Biol. 2005;42:464–70.

Rohlfs M, Albert M, Keller NP, Kempken F. Secondary chemicals protect mould from fungivory. Biol Lett. 2007;3:523–5.

Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R, Erdmann R. Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell. 2004;15:3406–17.

Roze LV, Chanda A, Linz JE. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol. 2011;48:35–48.

Samson SM, Belagaje R, Blankenship DT, Chapman JL, Perry D, Skatrud PL, et al. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature. 1985;318:191–4.

Sawada Y, Baldwin JE, Singh PD, Solomon NA, Demain AL. Cell-free cyclization of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N. Antimicrob Agents Chemother. 1980;18:465–70.

Schneider K, Hövel K, Witzel K, Hamberger B, Shomburg D, Kombrink E, Stuible H-P. The substrate specificity determining amino acid code of 4-coumarate:CoA ligase. Proc Nat Acad Sci. 2003;100:8601–6.

Siewers V, Chen X, Huang L, Zhang J, Nielsen J. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae. Metab Eng. 2009;11:391–7.

Spröte P, Hynes MJ, Hortschansky P, Shelesty E, Scharf DH, Wolke SM, Brakhage AA. Identification of the novel penicillin biosyn-thesis gene aatB of Aspergillus nidulans and its putative evolu-tionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol. 2008;70:445–61.

Spröte P, Brakhage AA, Hynes MJ. Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell. 2009;8:421–3.

Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, et al. The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell. 2008;19:1439–49.

Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J. 2009;418:113–24.

Tobin MB, Cole SC, Miller JR, Baldwin JE, Sutherland JD. Amino-acid substitutions in the cleavage site of acyl-coenzyme A: isopenicillin N acyltransferase from Penicillium chrysogenum: effect on proenzyme cleavage and activity. Gene. 1995;162:29–35.

Ullán RV, Casqueiro J, Bañuelos O, Fernández FJ, Gutiérrez S, Martín JF. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem. 2002;277:46216–25.

Ullán RV, Liu G, Casqueiro J, Gutiérrez S, Bañuelos O, Martín JF. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics. 2002;267:673–83.

Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J. 2010;432(2):227–36.

van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol. 2008;26:1161–8.

van den Berg MA, Gidijala L, Kiela J, Bovenberg R, Vander Keli I. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnol Genet Eng Rev. 2010;27:1–32.

van der Lende TR, van de Kamp M, van den Berg M, Sjollema K, Bovenberg RA, Veenhuis M, et al. δ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol. 2002;37:49–55.

Velasco J, Gutiérrez S, Campoy S, Martín JF. Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem J. 1999;337:379–85.

Voigt O, Pöggeler S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biotechnol. 2013;97:9277–90.

Wang FQ, Liu J, Dai M, Ren ZH, Su CY, He JG. Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun. 2007;360:453–8.

Wang H, Pan Y, Hu P, Zhu Y, Li J, Jiang X, Liu G. The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol. 2014;69:65–74.

Weber SS, Kovalchuk A, Bovenberg RA, Driessen AJ. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum. Fungal Genet Biol. 2012;49(915–874):921.

Yang J, Xinxin X, Liu G. Amplification of an MFS transporter encoding gene penT significantly stimulates penicillin production and enhances the sensitivity of penicillium chrysogenum to phenylacetic acid. Journal of Genetics and Genomics. 2012;39:593.

Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12(Suppl 2):1542–52.

Yu ZL, Liu J, Wang FQ, Dai M, Zhao BH, He JG, et al. Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum. Folia Microbiol (Praha). 2011;56:246–52.

Zanca DM, Martín JF. Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J Antibiot. 1983;36:700–8.

Zeilinger S, García-Estrada C, Martín JF. Fungal secondary metabolites in the “OMICS” Era. In: Zeilinger S, Martín JF, García-Estrada C, editors. Biosynthesis and molecular genetics of fungal secondary metabolites, II. New York: Springer; 2014. p. 1–12.

Zjalic S, Fanelli C. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol. 2010;87:899–911.