Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics

Matter and Radiation at Extremes - Tập 2 - Trang 287-295 - 2017
H.Y. Sun1,2, Dongdong Kang2, Yong Hou2, J.Y. Dai2
1Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, PR China
2Department of Physics, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China

Tóm tắt

The equation of states, diffusions, and viscosities of strongly coupled Fe at 80 and 240 eV with densities from 1.6 to 40 g/cm3 are studied by orbital-free molecular dynamics, classical molecular dynamics with a corrected Yukawa potential and compared with the results from average atom model. A new local pseudopotential is generated for orbital free calculations. For low densities, the Yukawa model captures the correct ionic interaction behavior around the first peak of the radial distribution function (RDF), thus it gives correct RDFs and transport coefficients. For higher densities, the scaled transformation of the Yukawa potential or adding a short range repulsion part to the Yukawa potential can give correct RDFs and transport coefficients. The corrected potentials are further validated by the force matching method.

Tài liệu tham khảo

2000, Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core, Phys. Usp., 43, 493, 10.1070/pu2000v043n05abeh000682 1998, The viscosity of liquid iron at the physical conditions of the Earth's core, Nature, 392, 805, 10.1038/33905 2008, Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system, High Energy Density Phys., 4, 49, 10.1016/j.hedp.2007.11.001 1996, On the Reynolds number in laser experiments, Jpn. J. Appl. Phys., 35, 4516, 10.1143/jjap.35.4516 2000, Control of Rayleigh-Taylor instabilities in laser accelerated seeded targets, Laser Part. Beams, 18, 119, 10.1017/s0263034600181145 2013, Solid iron compressed up to 560 GPa, Phys. Rev. Lett., 111, 065501, 10.1103/physrevlett.111.065501 2006, Very-high-temperature molecular dynamics, Phys. Rev. E, 73, 016403, 10.1103/physreve.73.016403 2008, Orbital-free density functional theory for molecular structure calculations, Numer. Math. Theor. Meth. Appl., 1, 1 2012, Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations, Phys. Rev. B, 86, 115101, 10.1103/physrevb.86.115101 2013, Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations, Phys. Rev. B, 88, 161108, 10.1103/physrevb.88.161108 2014, Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes, Phys. Rev. Lett., 113, 155006, 10.1103/physrevlett.113.155006 2014, Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations, Phys. Rev. Lett., 112, 076403, 10.1103/physrevlett.112.076403 1994, Thermodynamics of strongly coupled Yukawa systems near the one component plasma limit. I. Derivation of the excess energy, J. Chem. Phys., 101, 9876, 10.1063/1.467954 1981, Electron scattering by ionized impurities in semiconductors, Rev. Mod. Phys., 53, 745, 10.1103/revmodphys.53.745 2009, X-ray Thomson scattering in high energy density plasmas, Rev. Mod. Phys., 81, 1625, 10.1103/RevModPhys.81.1625 2014, Finite-temperature orbital-free DFT molecular dynamics: coupling Profess and Quantum Espresso, Comput. Phys. Commun., 185, 3240, 10.1016/j.cpc.2014.08.023 2009, Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples, Phys. Rev. E, 79, 016402, 10.1103/physreve.79.016402 2014, Multi-average ion model for hot dense plasmas derived from finite temperature density-functional theory, High Energy Density Phys., 13, 40, 10.1016/j.hedp.2014.09.006 2011, Plasma screening effects on the atomic structure and radiative opacity of dense carbon plasmas based on the DLA model, High Energy Density Phys., 7, 54, 10.1016/j.hedp.2011.01.001 2011, Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium, High Energy Density Phys., 7, 155, 10.1016/j.hedp.2011.03.007 2011, Thermodynamic and kinetic properties of shocks in two-dimensional Yukawa systems, Phys. Rev. Lett., 118, 025001, 10.1103/PhysRevLett.118.025001 2016, Equation of state of dense plasmas with pseudoatom molecular dynamics, Phys. Rev. E, 93, 063206, 10.1103/physreve.93.063206 2015, Pseudoatom molecular dynamics, Phys. Rev. E, 91, 013104, 10.1103/physreve.91.013104 2008, Structure of strongly coupled multicomponent plasmas, Phys. Rev. E, 77, 056404, 10.1103/physreve.77.056404 2004, Reaction ensemble Monte Carlo technique and hypernetted chain approximation study of dense hydrogen, Phys. Rev. E, 69, 061204, 10.1103/physreve.69.061204 2007, Energy level broadening effect on the equation of state of hot dense Al and Au plasma, J. Phys. Condens. Matter, 19, 425204, 10.1088/0953-8984/19/42/425204 2015, Average-atom model combined with the hypernetted chain approximation applied to warm dense matter, Phys. Rev. E, 91, 033144, 10.1103/physreve.91.033114 1994, Light elements in the Earth's outer core: a critical review, Phys. Earth Planet. Inter., 85, 319, 10.1016/0031-9201(94)90120-1 2008, Core-mantle boundary heat flow, Nat. Geosci., 1, 25, 10.1038/ngeo.2007.44 2013, Melting of iron at Earth's inner core boundary based on fast X-ray diffraction, Science, 340, 464, 10.1126/science.1233514 2002, Iron under Earth's core conditions: liquid-state thermodynamics and high-pressure melting curve from ab initio calculations, Phys. Rev. B, 65, 165118, 10.1103/physrevb.65.165118 2002, Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core, J. Chem. Phys., 14, 7120, 10.1063/1.1464121 2013, Ab initio equation of state of iron up to 1500 GPa, Phys. Rev. B, 87, 094102, 10.1103/physrevb.87.094102 2014, Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures, J. Chem. Phys., 140, 114505, 10.1063/1.4868550 2011, The melting curves and entropy of iron under high pressure, J. Chem. Eng. Data, 56, 2063, 10.1021/je1010483 2010, Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion induced friction, Phys. Rev. Lett., 104, 245001, 10.1103/physrevlett.104.245001 2012, Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve, Phys. Rev. Lett., 109, 175701, 10.1103/physrevlett.109.175701 2007, Yukawa monte carlo and orbital free molecular dynamics approaches for the equation of state and structural properties of hot dense matter, High Energy Density Phys., 3, 95, 10.1016/j.hedp.2007.02.005 2006, Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics, Europhys. Lett., 75, 681, 10.1209/epl/i2006-10184-7 2013, Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of giant planet core, New J. Phys., 15, 045003, 10.1088/1367-2630/15/4/045003 2014, Quantum molecular dynamics study of warm dense iron, Phys. Rev. E, 89, 023101, 10.1103/physreve.89.023101 2015, A higher-than-predicted measurement of iron opacity at solar interior temperatures, Nature, 517, 56, 10.1038/nature14048 2011, On the transport coefficients of hydrogen in the inertial confinement fusion regime, Phys. Plasmas, 18, 056306, 10.1063/1.3574902 1949, Equations of state of elements based on the generalized Fermi-Thomas theory, Phys. Rev., 75, 1561, 10.1103/physrev.75.1561 2008, Transferable local pseudopotentials for magnesium, aluminum and silicon, Phys. Chem. Chem. Phys., 10, 7109, 10.1039/b810407g W.R. Johnson , FORTRAN Program for Temperature-dependent Thomas-Fermi Atom, 2002 http://www.nd.edu/johnson/. 2002, First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci., 25, 478, 10.1016/s0927-0256(02)00325-7 2005, A brief introduction to the ABINIT software package, Z. Krist., 220, 558, 10.1524/zkri.220.5.558.65066 1998, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B, 58, 3641, 10.1103/PhysRevB.58.3641 1997, Operator-splitting integrators for constant-temperature molecular dynamics, J. Chem. Phys., 106, 6102, 10.1063/1.473273 1987, Molecular Simulation of Liquids 2013, Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum, Phys. Rev. Lett., 111, 175002, 10.1103/physrevlett.111.175002 2012, Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics, Phys. Rev. E, 85, 066701, 10.1103/physreve.85.066701 2007, Properties of hot dense plasmas by orbital-free molecular dynamics, Contrib. Plasma Phys., 47, 272, 10.1002/ctpp.200710037 2006, Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: an average atom model demonstration, Phys. Plasmas, 13, 093301, 10.1063/1.2338023 2009, Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations, Phys. Rev. E, 79, 010201, 10.1103/physreve.79.010201 2013, Effective ion-ion potentials in warm dense matter, High Energy Density Phys., 9, 178, 10.1016/j.hedp.2012.12.009 2004, Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching, J. Chem. Phys., 120, 10896, 10.1063/1.1739396 2013, Effective ion-ion potentials in warm dense matter, High Energy Density Phys., 9, 178, 10.1016/j.hedp.2012.12.009 2016, First-principles study on equation of states and electronic structures of shock compressed Ar up to warm dense regime, J. Chem. Phys., 144, 124503, 10.1063/1.4943767 1994, Interatomic potentials from first-principles calculations, Europhys. Lett., 26, 583, 10.1209/0295-5075/26/8/005 2014, Coupling strength in Coulomb and Yukawa one-component plasmas, Phys. Plasmas, 21, 113704, 10.1063/1.4900625 2013, Partial ionization in dense plasmas: comparisons among average-atom density functional models, Phys. Rev. E, 87, 063113, 10.1103/physreve.87.063113