Transport phenomena in a nonequilibrium, partially ionized gas in a magnetic field

Springer Science and Business Media LLC - Tập 26 - Trang 641-652 - 1974
Jean -Pierre Petit1, Michel Larini1
1Laboratoire de Dynamique des Systèmes Réactifs, Université de Provence, Marseille, France

Tóm tắt

A small-parameter method in which the gas and electron temperatures can be different is used to solve the Boltzmann equation. The zeroth-approximation solutions are Maxwellian with different temperatures Te and Ts. Transition to the BGK formalism on the basis of an extremely crude estimate of the frequency of electron collisions leads to numerical results which agree well with the available data. Then an extension of the Eucken method leads to analytic expressions for the nonequilibrium quasi-Lorentz transport coefficients.

Tài liệu tham khảo

H. Grad, “Theory of rarefied gases,” in: Rarefied Gas Dynamics (ed. F. M. Devienne), Pergamon, New York-London (1960). T. F. Morse, Phys. Fluids,6, No. 10 (1963). E. A. Johnson, Phys. Fluids,16, No. 1 (1973). P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.,94, No. 3, 511 (1954). G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York (1965). L. Spitzer, Jr., and R. Harm, Phys. Rev.,89, 977 (1953). R. S. Devoto, Phys. Fluids,10, No. 2 (1967). M. S. Sodha and Y. P. Varshni, Phys. Rev.,111, 1203–1205 (1958); “Dependence of electron mobility on magnetic field in a fully ionized gas,” Phys. Rev.,114, 946–947 (1959). R. Landshoff, Phys. Rev.,76, 904 (1949). A. Rucken, Physik Z.,14, 324 (1913); M. N. Kogan, Rarefied Gas Dynamics, Plenum, New York (1969), p. 216. J.-P. Petit, Journal de Mécanique,11, No. 2, 233 (1972). M. N. Kogan, Rarefied Gas Dynamics (Kinetic Theory) [in Russian], Nauka, Moscow (1967). S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases, Cambridge Univ. Press (1953). C. Cercignani, Mathematical Methods in Kinetic Theory, Macmillan, New York (1969). T. F. Morse, Phys. Fluds,7, No. 2, 159–169 (1964). R. M. Chmielski and J. H. Ferziger, Phys. Fluids,10, No. 2 (1967).