Vận chuyển nanoparticle titanium dioxide trong môi trường xốp bão hòa dưới các điều kiện hóa học dung dịch khác nhau

Springer Science and Business Media LLC - Tập 14 - Trang 1-9 - 2012
Yu Wang1, Bin Gao1, Verónica L. Morales2, Yuan Tian1, Lei Wu1, Jie Gao3, Wei Bai3, Liuyan Yang4
1Department of Agricultural and Biological Engineering, University of Florida, Gainesville, USA
2SIMBIOS Centre, University of Abertay, Dundee, UK
3Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA.
4State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China

Tóm tắt

Do có nhiều ứng dụng, titanium dioxide kích thước nan có thể trở thành mối nguy tiềm tàng đối với môi trường đất và hệ thống nước ngầm. Do đó, việc cải thiện hiểu biết hiện tại về số phận môi trường và sự vận chuyển của các hạt nanoparticle oxit titanium (TONPs) là rất quan trọng. Trong nghiên cứu này, ảnh hưởng của hóa học dung dịch (tức là pH, độ mạnh ion, và nồng độ chất hữu cơ tự nhiên (NOM)) đối với quá trình lắng đọng và vận chuyển của TONPs trong môi trường xốp bão hòa đã được nghiên cứu chi tiết. Các cột thí nghiệm chứa cát thạch anh làm sạch axit đã được sử dụng trong thí nghiệm như là môi trường xốp. Các thí nghiệm vận chuyển được thực hiện với nhiều kết hợp hóa học khác nhau, bao gồm bốn độ mạnh ion, ba mức pH, và hai nồng độ NOM. Kết quả cho thấy tính di động của TONP tăng lên khi pH dung dịch tăng, nhưng giảm khi độ mạnh ion dung dịch tăng. Ngoài ra, sự hiện diện của NOM trong hệ thống đã nâng cao tính di động của TONPs trong môi trường xốp bão hòa. Lý thuyết Derjaguin–Landau–Verwey–Overbeek (DLVO) đã được sử dụng để giải thích các xu hướng di động được quan sát trong dữ liệu thực nghiệm. Dự đoán từ lý thuyết này hoàn toàn khớp với dữ liệu thực nghiệm.

Từ khóa

#Titanium dioxide #nanoparticles #environmental risk #saturated porous media #solution chemistry #mobility #DLVO theory

Tài liệu tham khảo

Chen LX, Sabatini DA, Kibbey TCG (2008) Role of the air-water interface in the retention of TiO(2) nanoparticles in porous media during primary drainage. Environ Sci Technol 42:1916–1921 Chen LX, Sabatini DA, Kibbey TCG (2010) Retention and release of TiO(2) nanoparticles in unsaturated porous media during dynamic saturation change. J Contam Hydrol 118:199–207 Chen GX, Liu XY, Su CM (2011) Transport and retention of TiO(2) rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir 27:5393–5402 Chowdhury I, Hong Y, Honda RJ, Walker SL (2011) Mechanisms of TiO(2) nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J Colloid Interface Sci 360:548–555 Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286 Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworth-Heinemann Ltd, Woburn, MA Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Stability of Titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109 Franchi A, O’Melia CR (2003) Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environ Sci Technol 37:1122–1129 Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328 Godinez IG, Darnault CJG (2011) Aggregation and transport of nano-TiO(2) in saturated porous media: effects of pH, surfactants and flow velocity. Water Res 45:839–851 Guzman KAD, Finnegan MP, Banfield JF (2006a) Influence of surface potential on aggregation and transport of Titania nanoparticles. Environ Sci Technol 40:7688–7693 Guzman KAD, Taylor MR, Banfield JF (2006b) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ Sci Technol 40:1401–1407 Johnson PR, Sun N, Elimelech M (1996) Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ Sci Technol 30:3284–3293 Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763 Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169 Li X, Lenhart JJ, Walker WW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1101 Morales VL, Sang WJ, Fuka DR, Lion LW, Gao B, Steenhuis TS (2011) Correlation equation for predicting attachment efficiency (alpha) of organic matter-colloid complexes in unsaturated porous media. Environ Sci Technol 45:10096–10101 Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV (2010) Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ Sci Technol 44:4531–4538 Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO(2) production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233 Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY (2010) Concurrent aggregation and deposition of TiO(2) nanoparticles in a sandy porous media. Environ Sci Technol 44:4897–4902 Suttiponparnit K, Jiang JK, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6 Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766 Thio BJR, Zhou DX, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563 Tian YA, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12:2371–2380 Tian Y, Gao B, Wang Y, Morales VL, Carpena RM, Huang QG, Yang LY (2012) Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. J Hazard Mater 213:265–272 Tosco T, Bosch J, Meckenstock R, Sethi R (2012) Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate. Environ Sci Technol. doi:10.1021/es202643c van Oss CJ, Giese RF, Costanzo PM (1990) DLVO and non-DLVO interactions in hectorite. Clay Clay Miner 38:151–159 Xiong Z, He F, Zhao DY, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179 Yao KM, Habibian MM, Omelia CR (1971) Water and waste water filtration—concepts and applications. Environ Sci Technol 5:1105–& Zhang Y, Chen YS, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257 Zhang HY, Smith JA, Oyanedel-Craver V (2012) The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res 46:691–699