Transport and deposition of pharmaceutical particles in three commercial spacer–MDI combinations

Computers in Biology and Medicine - Tập 54 - Trang 145-155 - 2014
A. Yazdani1, M. Normandie1, M. Yousefi2, M.S. Saidi1, G. Ahmadi3
1Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P. O. Box 11155-9567, Tehran, Iran
2Micro-Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
3Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699-5725, USA

Tài liệu tham khảo

Longest, 2007, Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence, J. Biomech., 40, 305, 10.1016/j.jbiomech.2006.01.006 Li, 2007, Simulation of airflow fields and micro-particle deposition in realistic human lung airway models, Eur. J. Mech.-B/Fluids, 26, 632, 10.1016/j.euromechflu.2007.02.003 Longest, 2010, CFD simulations of Enhanced Condensational Growth (ECG) applied to respiratory drug delivery with comparisons to in vitro data, J. Aerosol Sci., 41, 805, 10.1016/j.jaerosci.2010.04.006 Ounis, 1990, Analysis of dispersion of small spherical particles in a random velocity field, Trans. ASME J. Fluids Eng., 112, 114, 10.1115/1.2909358 Matida, 2006, Improving prediction of aerosol deposition in an idealized mouth using large-Eddy simulation, J. Aerosol Med., 19, 290, 10.1089/jam.2006.19.290 Koeppen, 2008 Zhang, 2011, Computational analysis of airflow and nanoparticle deposition in a combined nasal–oral–tracheobronchial airway model, J. Aerosol Sci., 42, 174, 10.1016/j.jaerosci.2011.01.001 Ghalichi, 1998, Low Reynolds number turbulence modeling of blood flow in arterial stenosis, J. Biorheol., 35, 281, 10.1016/S0006-355X(99)80011-0 Xi, 2008, Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles, ASME J. Biomech. Eng., 130, 011008, 10.1115/1.2838039 Longest, 2007, Effectiveness of direct lagrangiantracking models for simulating nanoparticle deposition in the upper airways, J. Aerosol Sci. Technol., 41, 380, 10.1080/02786820701203223 Versteeg, 2000, The use of Computational Fluid Dynamics (CFD) to predict pMDI air flows and aerosol plume formation, Respir. Drug Deliv. VII, 1, 257 Longest, 2008, Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry, J. Aerosol Sci., 39, 572, 10.1016/j.jaerosci.2008.03.008 Longest, 2009, Evaluation of the respimat soft mist inhaler using a concurrent CFD and in vitro approach, J.Aerosol Med. Pulm. D, 22, 99, 10.1089/jamp.2008.0708 Kleinstreuer, 2007, Computational analyses of a pressurized metered-dose inhaler and a new drug-aerosol targeting methodology, J. Aerosol Med., 20, 294, 10.1089/jam.2006.0617 Wilcox, 1998 Li, 2007, Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns, J. Aerosol Sci., 38, 625, 10.1016/j.jaerosci.2007.03.010 Longest, 2003, Comparison of blood particle deposition models for non-parallel flow domains, J. Biomech., 36, 421, 10.1016/S0021-9290(02)00434-7 Li, 1992, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, J. Aerosol Sci. Technol., 16, 209, 10.1080/02786829208959550 Hinds, 1999 Liu, 2007, Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES, J. Aerosol Sci., 38, 683, 10.1016/j.jaerosci.2007.05.003 Ilie, 2008, Asymmetrical aerosol deposition in an idealized mouth with a DPI mouthpiece inlet, J. Aerosol Sci. Technol., 42, 10, 10.1080/02786820701777440 Crowe, 1996, Numerical models for two-phase turbulent flows, Annu. Rev. Fluid Mech., 28, 11, 10.1146/annurev.fl.28.010196.000303 Matida, 2000, Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow, Int. J. Heat Fluid Flow, 21, 389, 10.1016/S0142-727X(00)00004-7 Iula, 1997, Comparative study of the in vitro dose delivery and particle size distribution characteristics of an azmacort metered-dose-inhaler in combination with four different spacer devices, J. Curr. Ther. Res., 58, 544, 10.1016/S0011-393X(97)80046-X Matida, 2004, A new add-on spacer design concept for dry-powder inhalers, J. Aerosol Sci., 35, 823, 10.1016/j.jaerosci.2004.01.003