Transport Properties of Two-Dimensional Topological Insulators and Excitonic Condensates

M. V. Boev1,2, L. S. Braginskii1,3, V. M. Kovalev1,2, L. I. Magarill1,3, M. M. Mahmoodian1,3, M. V. Entin1,3
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia

Tóm tắt

The paper reviews studies of the Laboratory of Theoretical Physics of the Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences. Two research directions are discussed: transport properties of two-dimensional excitonic systems and electron transport in two-dimensional topological insulators. Particular attention is given to excitonic systems in the mode of Bose–Einstein condensate and to the theory of conductivity of two-dimensional topogical insulator with a thickness close to the critical one caused by developed network of edge states permeating the sample.

Tài liệu tham khảo

M. Z. Hasan and C. L. Kane, ‘‘Colloquium: topological insulators,’’ Rev. Mod. Phys. 82, 3045–3067 (2010). https://doi.org/10.1103/RevModPhys.82.3045 X.-L. Qi and Sh.-Ch. Zhang, ‘‘Topological insulators and superconductors,’’ Rev. Mod. Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/RevModPhys.83.1057 B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, ‘‘Quantum spin hall effect and topological phase transition in HgTe quantum wells,’’ Science 314, 1757–1761 (2006). https://doi.org/10.1126/science.1133734 B. A. Volkov and O. A. Pankratov, ‘‘Two-dimensional massless electrons in an inverted contact,’’ JETP Lett. 42 (4), 178–181 (1985). G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, ‘‘Transport in disordered two-dimensional topological insulators,’’ Phys. Rev. B 84. 121302(R) (2011). https://doi.org/10.1103/PhysRevB.84.121302 Sh.-Q. Shen, Topological Insulators (Springer-Verlag, Berlin, 2017). https://doi.org/10.1007/978-3-642-32858-9 M. V. Entin, M. M. Mahmoodian, and L. I. Magarill, ‘‘Linearity of the edge states energy spectrum in the 2D topological insulator,’’ EPL 118, 57002 (2017). https://doi.org/10.1209/0295-5075/118/57002 M. V. Entin and L. Braginsky, ‘‘Exact solution for many-body Hamiltonian of interacting particles with linear spectrum,’’ EPL 120, 17003 (2017). https://doi.org/10.1209/0295-5075/120/17003 M. V. Entin and L. Braginsky, ‘‘Edge capacitance of a two-dimensional topological insulator,’’ Phys. Rev. B 96, 115403 (2017). https://doi.org/10.1103/PhysRevB.96.115403 M. V. Entin and L. I. Magarill, ‘‘Edge states on the curved boundary of a 2D topological insulator,’’ EPL 120, 37003 (2017). https://doi.org/10.1209/0295-5075/120/37003 M. M. Mahmoodian, L. I. Magarill, and M. V. Entin, ‘‘Edge absorption and pure spin current in a 2D topological insulator in the Volkov–Pankratov model,’’ J. Phys.: Condens. Matter 29, 435303 (2017). https://doi.org/10.1088/1361-648X/aa8849 M. M. Mahmoodian and M. V. Entin, ‘‘Microwave absorption in 2D topological insulators with a developed edge states network,’’ Phys. Status Solidi B 256, 1800652 (2019). https://doi.org/10.1002/pssb.201800652 M. M. Mahmoodian and M. V. Entin, ‘‘Conductivity of a two-dimensional HgTe layer near the critical width: The role of developed edge states network and random mixture of p- and n-domains,’’ Phys. Rev. B 101, 125415 (2020). https://doi.org/10.1103/PhysRevB.101.125415 R. F. Voss, ‘‘The fractal dimension of percolation cluster hulls,’’ J. Phys. A: Math. Gen. 17, L373–L377 (1984). https://doi.org/10.1088/0305-4470/17/7/001 A. A. High, A. T. Hammack, L. V. Butov, M. Hanson, and A. C. Gossard, ‘‘Exciton optoelectronic transistor,’’ Opt. Lett. 32, 2466–2468 (2007). https://doi.org/10.1364/OL.32.002466 A. A. High, E. E. Novitskaya, L. V. Butov, M. Hanson, and A. C. Gossard, ‘‘Control of exciton fluxes in an excitonic integrated circuit,’’ Science 321 (5886), 229–231 (2008). https://doi.org/10.1126/science.1157845 G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, ‘‘Excitonic switches operating at around 100 K,’’ Nat. Photonics 3, 577–580 (2009). https://doi.org/10.1038/nphoton.2009.166 L. V. Butov, ‘‘Excitonic devices,’’ Superlattices Microstruct. 108, 2–26 (2017). https://doi.org/10.1016/j.spmi.2016.12.035 M. V. Boev, V. M. Kovalev, and I. G. Savenko, ‘‘Resonant photon drag of dipolar excitons,’’ JETP Lett. 107, 737–741 (2018). https://doi.org/10.1134/S0021364018120044 V. M. Kovalev, A. E. Miroshnichenko, and I. G. Savenko, ‘‘Photon drag of a Bose–Einstein condensate,’’ Phys. Rev. B 98, 165405 (2018). https://doi.org/10.1103/PhysRevB.98.165405 A. V. Kolobov and J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides (Springer, Cham, 2016) https://doi.org/10.1007/978-3-319-31450-1 V. M. Kovalev and I. G. Savenko, ‘‘Quantum anomalous valley Hall effect for bosons,’’ Phys. Rev. B 100, 121405(R) (2019). https://doi.org/10.1103/PhysRevB.100.121405