Transparent conductors as solar energy materials: A panoramic review

Solar Energy Materials and Solar Cells - Tập 91 Số 17 - Trang 1529-1598 - 2007
Claes G. Granqvist1
1Department of Engineering Sciences, The Angstrom Laboratory, Uppsala University, P.O. Box 534, SE-75121 Uppsala, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Smalley, 2005, Future global energy prosperity: the terawatt challenge, MRS Bull., 30, 412, 10.1557/mrs2005.124

Mc Michael, 2004, Global climate change, 1543

Palz, 2005, Impact of regional climate change on human health, Nature, 438, 310, 10.1038/nature04188

Mitchell, 2006, Extreme events due to human-induced climate change, Philos. Trans. R. Soc. A, 364, 2117, 10.1098/rsta.2006.1816

Santamouris, 2001, Solar and natural resources for a better efficiency in the built environment, 1

Kolokotroni, 2007, The London heat island and building cooling design, Sol. Energy, 81, 102, 10.1016/j.solener.2006.06.005

2005

Stern, 2007

Granqvist, 2003, Solar energy materials, Adv. Mater., 15, 1789, 10.1002/adma.200300378

C.G. Granqvist, Solar energy materials, in: C.J. Cleveland (Editor-in-Chief), Encyclopedia of Energy, vol. 3, Elsevier, Oxford, UK, 2004, pp. 845–858.

C.G. Granqvist, Solar energy materials, in: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 23, fifth ed., Wiley, Hoboken, USA, 2006, pp. 1–32.

1990, vol. IS4

Granqvist, 1981, Radiative heating and cooling with spectrally selective surfaces, Appl. Opt., 20, 2606, 10.1364/AO.20.002606

Granqvist, 1989, vol. TT1

1991

Fanger, 1970

1994

2005

J.L. Stoops, The physical environment and occupant thermal perceptions in office buildings, Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2001, unpublished.

Jelle, 2007, Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings, Sol. Energy Mater. Sol. Cells, 91, 342, 10.1016/j.solmat.2006.10.017

Granqvist, 2001, “Charge your glasses” with electrochromic glazing, Int. Glass Rev., 67

Granqvist, 2002, Smart windows and intelligent glass façades, Smart Mater. Bull., 9, 10.1016/S1471-3918(02)80152-6

Azens, 2003, Electrochromic smart windows: energy efficiency and device aspects, J. Solid State Electrochem., 7, 64, 10.1007/s10008-002-0313-4

Green, 2005, Solar cell efficiency tables (version 25), Prog. Photovoltaic Res. Dev., 13, 49, 10.1002/pip.598

A. Roos, D. Covalet, X. Fanton, M.-L. Persson, W. Platzer, T.R. Nielsen, H.R. Wilson, M. Zinzi, M. Köhl, M. Heck, B. Chevalier, Energy performance of switchable glazing, in: Proceedings of the International Conference on the Durability of Building Materials and Components, Lyon, France, 2005, pp. 17–20.

A. Roos, M.-L. Persson, W. Platzer, M. Köhl, Energy efficiency of switchable glazing in office buildings, in: Proceedings Glass Processing Days, Tampere, Finland, 2005, pp. 566–569.

Lee, 2006, Daylighting control performance of a thin-film ceramic electrochromic window: field study results, Energy Build., 38, 30, 10.1016/j.enbuild.2005.02.009

Lee, 2006

M.-L. Persson, A. Roos, Simulation results of a reference office with different switchable windows, to be published.

Clear, 2006, Subject responses to electrochromic windows, Energy Build., 38, 758, 10.1016/j.enbuild.2006.03.011

Aleo, 2001, Optical and energetic performances of an electrochromic window tested in a “PASSYS” cell, Electrochim. Acta, 46, 2243, 10.1016/S0013-4686(01)00367-X

Gugliermetti, 2003, Visual and energy management of electrochromic windows in Mediterranean climate, Build. Environ., 38, 479, 10.1016/S0360-1323(02)00124-5

Gugliermetti, 2006, Daylighting with external shading devices: design and simulation algorithms, Build. Environ., 41, 136, 10.1016/j.buildenv.2004.12.011

Porta-Gándara, 2003, Energy savings calculation for offices with electrochromic window panes, 351

Porta-Gándara, 2005, Solar performance of an electrochromic geodesic dome roof, Energy, 30, 2474, 10.1016/j.energy.2004.12.001

Assimakopolous, 2004, Integrated energetic approach for a controlable electrochromic device, Energy Build., 36, 415, 10.1016/j.enbuild.2004.01.040

Lee, 2004, Low-cost networking for dynamic window systems, Energy Build., 36, 503, 10.1016/j.enbuild.2003.12.008

James, 2005, Smart glazing solutions to glare and solar gain: a “sick building” case study, Energy Build., 37, 1058, 10.1016/j.enbuild.2004.12.010

Reinhart, 2002, Energy efficient energy buildings, 79

Bojić, 2005, Cooling energy evaluation for high-rise residential buildings in Hong Kong, Energy Build., 37, 345, 10.1016/j.enbuild.2004.07.003

Barnham, 2006, Resolving the energy crisis: nuclear or photovoltaics?, Nat. Mater., 5, 161, 10.1038/nmat1604

A. Jäger-Waldau (Ed.), REF-SYST Status Report 2004, EUR 21297 EN, JRC, Ispra, Italy, 2004.

Brockett, 2002, A tale of five cities: the China residential energy consumption survey, 8.29

Darwich, 2005, Energy efficient air conditioning: case study for Kuwait, Kuwait J. Sci. Eng., 32, 209

Aboulnaga, 2006, Towards green buildings: glass as a building element—the use and misuse in the Gulf region, Renew. Energy, 31, 631, 10.1016/j.renene.2005.08.017

Thelen, 1989

J.A. Dobrowolski, Optical properties of films and coatings, in: M. Bass (Editor-in-Chief), Handbook of Optics, vol. 1, second ed., McGraw-Hill, New York, USA, 1995, pp. 42.1–42.130 (Chapter 42).

Rancourt, 1996, vol. PM37

Pulker, 1999

Gläser, 2000

2003

1970

1978

1991

Bunshah, 1982

Smith, 1995

Mahan, 2000

Chapman, 1980

1989

Konuma, 1992

Wasa, 1992

Holland, 1956

Glang, 1970, Vacuum evaporation

Motohiro, 1989, Angular-resolved ion-beam sputtering for large-area deposition, Rev. Sci. Instrum., 60, 2657, 10.1063/1.1140690

1994

Frenzer, 2006, Amorphous porous mixed oxides: sol–gel ways to a highly versatile class of materials and catalysts, Annu. Rev. Mater. Res., 36, 281, 10.1146/annurev.matsci.36.032905.092408

Morosanu, 1990

Pierson, 1999

Martinu, 2000, Plasma deposition of optical films and coatings: a review, J. Vac. Sci. Technol. A, 18, 2619, 10.1116/1.1314395

Lowenheim, 1978, Deposition of inorganic films from solution, 209

S. Wernick, R. Pinner, The Surface Treatment and Finishing of Aluminium and Its Alloys, vols. 1 and 2, fourth ed., Draper, Teddington, UK, 1972.

Granqvist, 1991, Energy efficient windows: present and forthcoming technology, 106

Meyer, 1989, In situ deposition monitoring for solar film production by roll coating, J. Vac. Sci. Technol. A, 7, 1432, 10.1116/1.576298

Martinu, 2003, Optical coatings on plastics, 359

1995

Wigginton, 1996

Rånby, 1975

Rabek, 1995

Rabek, 1996

Croll, 2003, Quantitative spectroscopy to determine the effects of photodegradation on a model polyester-urethane coating, J. Coatings Technol., 75, 85, 10.1007/BF02720155

Ouyang, 2006, Conducting polymer as transparent electric glue, Adv. Mater., 18, 2141, 10.1002/adma.200502475

Smith, 2002, Nanoparticle-doped polymer foils for use in solar control glazing, J. Nanoparticle Res., 4, 157, 10.1023/A:1020186701109

Schelm, 2003, Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing, Appl. Phys. Lett., 82, 4346, 10.1063/1.1584092

Harima, 1988, New interpretation of the de Haas–van Alpen signals of LaB6, Solid State Commun., 66, 603, 10.1016/0038-1098(88)90217-7

Nostell, 1999, Optical and mechanical properties of sol–gel antireflective films for solar energy applications, Thin Solid Films, 351, 170, 10.1016/S0040-6090(99)00257-6

Yancey, 2006, The influence of void space on antireflection coatings of silica nanoparticle self-assembled films, J. Appl. Phys., 99, 034313, 10.1063/1.2171784

Kennedy, 2003, Porous broadband antireflection coating by glancing angle deposition, Appl. Opt., 42, 4573, 10.1364/AO.42.004573

Biswas, 2006, Nanoporous organosilicate films as antireflection coatings, Thin Solid Films, 514, 350, 10.1016/j.tsf.2006.02.087

Harding, 1985, Production and properties of high rate sputtered low index transparent dielectric materials based on aluminium-oxy-fluoride, Sol. Energy Mater., 12, 169, 10.1016/0165-1633(85)90056-5

Harding, 1985, Antireflection of sputtered heat mirror and transparent conducting coatings by metal-oxy-fluoride films, Sol. Energy Mater., 12, 187, 10.1016/0165-1633(85)90057-7

Cathro, 1984, Silica low-reflection coatings for collector covers, by a dip-coating process, Sol. Energy, 32, 573, 10.1016/0038-092X(84)90131-2

Chinyama, 1993, Stability of antireflection coatings for large area glazing, Sol. Energy, 50, 105, 10.1016/0038-092X(93)90081-X

Striemer, 2002, Dynamic etching of silicon for broadband antireflection applications, Appl. Phys. Lett., 81, 2980, 10.1063/1.1514832

Gombert, 1998, Glazing with very high solar transmittance, Sol. Energy, 62, 177, 10.1016/S0038-092X(98)00008-5

Dobrowolski, 1990, Refinement of optical multilayer systems with different optimization procedures, Appl. Opt., 29, 2876, 10.1364/AO.29.002876

Premoli, 1992, Minimax refining of optical multilayer systems, Appl. Opt., 31, 1597, 10.1364/AO.31.001597

Liou, 2004, Tuning iteration method for antireflection coating designs in the visible spectral region, Jpn. J. Appl. Phys., 43, 547, 10.1143/JJAP.43.547

Liou, 2004, Minimizing searches method for wideband visible or wideband infrared antireflection coating design, Jpn. J. Appl. Phys., 43, 1343, 10.1143/JJAP.43.1343

Liou, 2005, Designing a broadband visible antireflection coating by jumping search method, Jpn. J. Appl. Phys., 44, 8462, 10.1143/JJAP.44.8462

Akhtar, 2006, Broad angle antireflection coatings and their damage threshold at 1064nm, J. Optoelect. Adv. Mater., 8, 1597

Liou, 2006, Design of wide-angular incidence antireflection coating over visible spectral region, Jpn. J. Appl. Phys., 45, 4051, 10.1143/JJAP.45.4051

Janicki, 2005, Hybrid optical coating design for omnidirectional antireflection purposes, J. Opt. A: Pure Appl. Opt., 7, L9, 10.1088/1464-4258/7/8/L01

Janicki, 2005, Design of hybrid coatings composed of homogeneous layers and refractive index gradients, Proc. Soc. Photo-Opt. Instrum. Eng., 5963, 397

Janicki, 2006, Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating, Appl. Opt., 45, 7851, 10.1364/AO.45.007851

Tikhonravov, 2006, New optimization algorithm for the synthesis of rugate optical coatings, Appl. Opt., 45, 1515, 10.1364/AO.45.001515

Lampert, 2003, Large-area smart glass and integrated photovoltaics, Sol. Energy Mater. Sol. Cells, 76, 489, 10.1016/S0927-0248(02)00259-3

Hollands, 2001, Glazings and coatings, 29

Manz, 2006, Triple vacuum glazing: heat transfer and basic mechanical design constraints, Sol. Energy, 80, 1632, 10.1016/j.solener.2005.11.003

Gilman, 1952, Transparent conducting films, Proc. Phys. Soc. London Section B, 65, 649, 10.1088/0370-1301/65/8/116

Lampert, 1981, Heat mirror coatings for energy conserving windows, Sol. Energy Mater., 6, 1, 10.1016/0165-1633(81)90047-2

Valkonen, 1984, Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni, and Al, Sol. Energy, 32, 211, 10.1016/S0038-092X(84)80038-9

Valkonen, 1987, Optimization of metal-based multilayers for transparent heat mirrors, Energy Res., 11, 397, 10.1002/er.4440110309

Smith, 1986, Noble-metal-based transparent infrared reflectors: experiments and theoretical analyses for very thin gold films, J. Appl. Phys., 59, 571, 10.1063/1.336615

Karlsson, 1982, Optical properties of transparent heat mirrors based on thin films of TiN, ZrN, and HfN, Proc. Soc. Photo-Opt. Instrum. Eng., 324, 52

Valkonen, 1986, Optical constants of thin silver and titanium nitride films, Proc. Soc. Photo-Opt. Instrum. Eng., 652, 235

Spencer, 1988, Design and use of a vacuum system for high rate reactive sputtering of TiO2/TiN/TiO2 solar control films, Sol. Energy Mater., 18, 87, 10.1016/0165-1633(88)90049-4

Claeson, 1990, Optical characterization of titanium-nitride-based solar control coatings, Sol. Energy Mater., 20, 455, 10.1016/0165-1633(90)90035-Y

Andersson, 1992, High stability titanium nitride based solar control films, Thin Solid Films, 214, 213, 10.1016/0040-6090(92)90772-4

Andersson, 1994, Zirconium nitride based transparent heat mirror coatings: preparation and characterization, Sol. Energy Mater. Sol. Cells, 32, 199, 10.1016/0927-0248(94)90304-2

Avrekh, 1999, Transparent, conducting, metallic thin films, Rev. Sci. Instrum., 70, 4328, 10.1063/1.1150075

Kunz, 1988, Optical and electrical properties of sputter-deposited Al films close to the percolation threshold, J. Appl. Phys., 64, 3740, 10.1063/1.341372

Ziebert, 2006, Hard multilayer coatings containing TiN and/or ZrN: a review and recent progress in their nanoscale characterization, J. Vac. Sci. Technol. A, 24, 554, 10.1116/1.2194031

Born, 1980

Stenzel, 2005

Travaly, 1999, Nucleation, growth, and aggregation of gold on polyimide surfaces, J. Mater. Res., 14, 3673, 10.1557/JMR.1999.0496

Kaiser, 2002, Review of the fundamentals of thin-film growth, Appl. Opt., 41, 3053, 10.1364/AO.41.003053

Trofimov, 2003, Morphology evolution in a growing film, Thin Solid Films, 428, 56, 10.1016/S0040-6090(02)01270-1

Trofimov, 2003, Quantitative description of surface morphology evolution in a growing film, Appl. Surf. Sci., 219, 93, 10.1016/S0169-4332(03)00637-8

Venables, 1984, Nucleation and growth of thin films, Rep. Prog. Phys., 47, 399, 10.1088/0034-4885/47/4/002

Robbins, 1988, Thin film nucleation and growth kinetics, Appl. Surf. Sci., 33/34, 379, 10.1016/0169-4332(88)90330-3

Jensen, 1996, A fractal model for the first stages of thin film growth, Fractals, 4, 321, 10.1142/S0218348X96000431

Andersson, 1975, Morphology and size distributions of islands in discontinuous films, J. Appl. Phys., 48, 1673, 10.1063/1.323851

Jeffers, 1994, Island-to-percolation transition during growth of metal films, J. Appl. Phys., 75, 5016, 10.1063/1.355742

Niklasson, 1985, Noble-metal-based transparent infrared reflectors: improved performance caused by nonhomogeneous film structure, Appl. Phys. Lett., 46, 713, 10.1063/1.95484

Hwang, 1992, Atomically flat gold films grown on hot glass, J. Appl. Phys., 72, 1852, 10.1063/1.351657

Markert, 2006, Structural and electrical properties of thin d.c. magnetron-sputtered gold films deposited on float glass, Surf. Interface Anal., 38, 715, 10.1002/sia.2258

Smith, 1996, Void formation during film growth: a molecular dynamics simulation study, J. Appl. Phys., 79, 1448, 10.1063/1.360983

Niklasson, 1981, Effective medium models for the optical properties of inhomogeneous materials, Appl. Opt., 20, 26, 10.1364/AO.20.000026

Niklasson, 1991, Optical properties of inhomogeneous two-component materials, 2

Norrman, 1978, Optical properties of discontinuous gold films, Phys. Rev. B, 18, 674, 10.1103/PhysRevB.18.674

Abelès, 1984, Optical properties of discontinuous thin films and rough surfaces of silver, vol. XXIV, 93

Kreibig, 1995

Gadenne, 1989, Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition, J. Appl. Phys., 66, 3019, 10.1063/1.344187

Murray, 2004, Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array, Phys. Rev. B, 69, 165407, 10.1103/PhysRevB.69.165407

Seal, 2006, Coexistence of localized and delocalized surface plasmon modes in percolating metal films, Phys. Rev. Lett., 97, 206103, 10.1103/PhysRevLett.97.206103

Weick, 2006, Surface plasmon in metallic nanoparticles: renormalization effects due to electron–hole excitations, Phys. Rev. B, 74, 165421, 10.1103/PhysRevB.74.165421

Liu, 1990, Temperature effect on ion-irradiation-induced grain growth in Cu thin films, J. Appl. Phys., 67, 2354, 10.1063/1.345530

Movchan, 1969, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, Fiz. Metal. Metalloved., 28, 653

Thornton, 1974, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 11, 666, 10.1116/1.1312732

Thornton, 1977, High rate thick film growth, Annu. Rev. Mater. Sci., 7, 239, 10.1146/annurev.ms.07.080177.001323

Thornton, 1977, Study of the microstructure of thick sputtered coatings, Thin Solid Films, 40, 335, 10.1016/0040-6090(77)90135-3

Thornton, 1986, The microstructure of sputter-deposited coatings, J. Vac. Sci. Technol. A, 4, 3059, 10.1116/1.573628

Messier, 1984, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol. A, 2, 500, 10.1116/1.572604

Messier, 1986, Toward quantification of thin film morphology, J. Vac. Sci. Technol. A, 4, 490, 10.1116/1.573866

Grovenor, 1984, The development of grain structure during growth of metallic films, Acta Metall., 32, 773, 10.1016/0001-6160(84)90150-0

Thompson, 1990, Grain growth in thin films, Annu. Rev. Mater. Sci., 20, 245, 10.1146/annurev.ms.20.080190.001333

Sayle, 2003, Evolutionary techniques in atomistic simulation: thin films and nanoparticles, Curr. Opin. Solid State Mater. Sci., 7, 3, 10.1016/S1359-0286(02)00138-9

Savaloni, 2004, A computer model for the growth of thin films in a structure zone model, Nanotechnology, 15, 311, 10.1088/0957-4484/15/3/014

Tu, 2003, Linear rate of grain growth in thin films during deposition, Phys. Rev. B, 67, 245408, 10.1103/PhysRevB.67.245408

Thompson, 1995, Texture development in polycrystalline thin films, Mater. Sci. Eng. B, 32, 211, 10.1016/0921-5107(95)03011-5

Valkonen, 1984, Optical selectivity of thin silver films prepared by RF-assisted DC magnetron sputtering, Mater. Lett., 3, 29, 10.1016/0167-577X(84)90008-9

Ebbesen, 1998, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, 391, 667, 10.1038/35570

Genet, 2007, Light in tiny holes, Nature, 445, 39, 10.1038/nature05350

Gao, 2006, Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays, NanoLetters, 6, 2104, 10.1021/nl061670r

Lin, 2006, Surface-plasmon-enhanced light transmission through planar metallic films, Phys. Rev. B, 74, 155407, 10.1103/PhysRevB.74.155407

Ye, 2006, Multiple transmission bands through metal films perforated with two periodic arrays of apertures, Appl. Phys. Lett., 89, 221108, 10.1063/1.2397540

Wang, 2006, Suppression of transmission minima and maxima with structured metal surface, Appl. Phys. Lett., 89, 221121, 10.1063/1.2400098

Popov, 2000, Theory of light transmission through subwavelength periodic hole arrays, Phys. Rev. B, 62, 16100, 10.1103/PhysRevB.62.16100

Martín-Moreno, 2001, Theory of extraordinary transmission through subwavelength hole arrays, Phys. Rev. Lett., 86, 1114, 10.1103/PhysRevLett.86.1114

Cao, 2002, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits, Phys. Rev. Lett., 88, 057403, 10.1103/PhysRevLett.88.057403

Lezec, 2004, Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays, Opt. Express, 12, 3629, 10.1364/OPEX.12.003629

Lalanne, 2005, Surface plasmons of metallic surfaces perforated by nanohole arrays, J. Opt. A: Pure Appl. Opt., 7, 422, 10.1088/1464-4258/7/8/013

Sarrazin, 2005, Light transmission assisted by Brewster–Zennek modes in chromium films carrying a subwavelength hole array, Phys. Rev. B, 71, 075404, 10.1103/PhysRevB.71.075404

Bai, 2006, Transmission of light by a single subwavelength cylindrical hole in metallic films, Appl. Phys. Lett., 89, 141110, 10.1063/1.2358210

Williams, 2006, Dispersion study of the infrared transmission resonances of freestanding Ni microarrays, Plasmonics, 1, 87, 10.1007/s11468-005-9001-4

Grupp, 2000, Crucial role of metal surface in enhanced transmission through subwavelength apertures, Appl. Phys. Lett., 77, 1569, 10.1063/1.1308530

Degiron, 2005, The role of localized plasmon modes in the enhanced transmission of periodic subwavelength apertures, J. Opt. A: Pure Appl. Opt., 7, S90, 10.1088/1464-4258/7/2/012

Gordon, 2004, Strong polarization in the optical transmission through elliptical nanohole arrays, Phys. Rev. Lett., 92, 037401, 10.1103/PhysRevLett.92.037401

Gordon, 2005, Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film, NanoLetters, 5, 1243, 10.1021/nl0509069

García-Vidal, 2006, Transmission of light through a single rectangular hole in a real metal, Phys. Rev. B, 74, 153411, 10.1103/PhysRevB.74.153411

Shou, 2005, Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures, Opt. Express, 13, 9834, 10.1364/OPEX.13.009834

Sun, 2006, Effect of the subwavelength hole symmetry on the enhanced optical transmission through metallic films, J. Appl. Phys., 100, 024320, 10.1063/1.2219995

Kumar, 2006, Double nanohole apex-enhanced transmission in metal films, Appl. Phys. B, 84, 25, 10.1007/s00340-006-2291-1

Olkkonen, 2006, Light transmission through a high index dielectric hole in a metal film surrounded by surface corrugations, Opt. Express, 14, 11506, 10.1364/OE.14.011506

Smith, 2004, Optical response in nanostructured thin metal films with dielectric over-layers, Opt. Commun., 242, 383, 10.1016/j.optcom.2004.09.001

Maaroof, 2005, Effective optical constants of nanostructured thin silver films and impact of an insulator coating, Thin Solid Films, 485, 198, 10.1016/j.tsf.2005.03.035

Prasher, 2006, Far field thermal radiation through nanoholes and apertures, NanoLetters, 6, 2135, 10.1021/nl061450d

Leftheriotis, 2000, Integrated low-emittance-electrochromic devices incorporating ZnS/Ag/ZnS coatings as transparent conductors, Sol. Energy Mater. Sol. Cells, 61, 107, 10.1016/S0927-0248(99)00101-4

Papaefthimiou, 2001, Advanced electrochromic devices based on WO3 thin films, Electrochim. Acta, 46, 2145, 10.1016/S0013-4686(01)00393-0

Sahu, 2006, High quality transparent conductive ZnO/Ag/ZnO multilayer films, Thin Solid Films, 515, 876, 10.1016/j.tsf.2006.07.049

Sahu, 2006, Effect of substrate temperature and annealing treatment on the electrical and optical properties of silver-based multilayer coating electrodes, Thin Solid Films, 515, 932, 10.1016/j.tsf.2006.07.061

Sahu, 2006, ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode, Appl. Surf. Sci., 252, 7509, 10.1016/j.apsusc.2005.09.021

Sahu, 2006, Characteristics of ZnO–Cu–ZnO multilayer films on copper layer properties, Appl. Surf. Sci., 253, 827, 10.1016/j.apsusc.2006.01.023

Sahu, 2006, Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers, Appl. Surf. Sci., 253, 915, 10.1016/j.apsusc.2006.01.035

Kusano, 1986, Thermal stability of heat-reflective films consisting of oxide-Ag-oxide deposited by dc magnetron sputtering, J. Vac. Sci. Technol. A, 4, 2907, 10.1116/1.573658

Bender, 1998, Dependence of film composition and thickness on optical and electrical properties of ITO/metal/ITO multilayers, Thin Solid Films, 326, 67, 10.1016/S0040-6090(98)00520-3

Choi, 1999, ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode, Thin Solid Films, 341, 152, 10.1016/S0040-6090(98)01556-9

Klöppel, 2000, Dependence of the electrical and optical properties of ITO-silver-ITO multilayers on the silver properties, Thin Solid Films, 365, 139, 10.1016/S0040-6090(99)00949-9

Klöppel, 2001, Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems, Thin Solid Films, 392, 311, 10.1016/S0040-6090(01)01049-5

Fahland, 2001, Low resistivity transparent electrodes for displays on polymer substrates, Thin Solid Films, 392, 334, 10.1016/S0040-6090(01)01053-7

Bertran, 2003, RF sputtering deposition of Ag/ITO coatings at room temperature, Solid State Ionics, 165, 139, 10.1016/j.ssi.2003.08.055

Jung, 2003, Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures, Thin Solid Films, 440, 278, 10.1016/S0040-6090(03)00835-6

Georgson, 1991, The influence of preparation conditions on the optical properties of titanium nitride based solar control films, J. Vac. Sci. Technol. A, 9, 2191, 10.1116/1.577249

Zhao, 2001, Preparation and characterization of TiO2/TiN/TiO2 multi-layer solar control coatings deposited by DC reactive magnetron sputtering at different substrate temperature, J. Wuhan Univ. Technol., 16, 9

Jung, 2005, High-rate and low-temperature synthesis of TiO2, TiN, TiO2/TiN/TiO2 thin films and study of their optical and interfacial characteristics, J. Vac. Sci. Technol. B, 23, 1826, 10.1116/1.1978903

Okada, 2006, Fabrication of photocatalytic heat-mirror with TiO2/TiN/TiO2 stacked layers, Vacuum, 80, 732, 10.1016/j.vacuum.2005.11.014

M.G. Hutchins, Coatings for solar and thermal radiation control: correlating near infrared reflectance, emissivity of coated glass products and the U-value of double glazed units, to be published.

Granqvist, 2002, Transparent and conducting ITO films: new developments and applications, Thin Solid Films, 411, 1, 10.1016/S0040-6090(02)00163-3

Bädeker, 1907, Über die Elektrische Leitfähigkeit und die Thermoelektrische Kraft Einiger Schwermetallverbindungen, Ann. Phys. (Leipzig), 22, 749, 10.1002/andp.19073270409

Preston, 1950, Constitution and mechanism of the selenium rectifier photocell, Proc. R. Soc. London Series A, 202, 449, 10.1098/rspa.1950.0112

Helwig, 1952, Elektrische Leitfähigkeit und Struktur Aufgestäubter Kadmiumoxydschichten, Z. Phys., 132, 621, 10.1007/BF01333221

Vossen, 1977, Transparent conducting films, vol. 9, 1

Holland, 1953, The properties of some reactively sputtered metal oxide films, Vacuum, 3, 375, 10.1016/0042-207X(53)90411-4

Rupprecht, 1954, Untersuchungen der Elektrischen und Lichtelektrischen Leitfähigkeit Dünner Indiumoxydschichten, Z. Phys., 139, 504, 10.1007/BF01374559

Thelen, 1956, Elektrische Leitfähigkeit und Struktur Aufgestäubter Indiumoxydschichten, Naturwissenschaften, 43, 297, 10.1007/BF00629544

Groth, 1965, Thermal insulation of sodium lamps, Philips Tech. Rev., 26, 105

Groth, 1966, Untersuchungen an Halbleitenden Indiumoxydschichten, Phys. Stat. Sol., 14, 69, 10.1002/pssb.19660140104

Coutts, 2000, Characterization of transparent conducting oxides, MRS Bull., 25, 58, 10.1557/mrs2000.152

Ginley, 2000, Transparent conducting oxides, MRS Bull., 25, 15, 10.1557/mrs2000.256

Kawazoe, 2000, Transparent p-type conducting oxides: design and fabrication of p–n heterojunctions, MRS Bull., 25, 28, 10.1557/mrs2000.148

Minami, 2000, New n-type transparent conducting oxides, MRS Bull., 25, 38, 10.1557/mrs2000.149

Minami, 2005, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., 20, S35, 10.1088/0268-1242/20/4/004

Edwards, 2004, Basic materials physics of transparent conducting oxides, Dalton Trans., 2995, 10.1039/b408864f

Nath, 1980, Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation, Thin Solid Films, 72, 463, 10.1016/0040-6090(80)90532-5

Takaki, 1988, Properties of highly conducting ITO films prepared by ion plating, Appl. Surf. Sci., 33/34, 919, 10.1016/0169-4332(88)90399-6

Adurodija, 2000, Effect of Sn doping on the electronic doping mechanism of indium-tin-oxide films grown by pulsed laser deposition coupled with substrate irradiation, J. Appl. Phys., 88, 4175, 10.1063/1.1290460

Adurodija, 2000, Pulsed laser deposition of crystalline indium tin oxide films at room temperature by substrate irradiation, Jpn. J. Appl. Phys., 39, L377, 10.1143/JJAP.39.L377

Ohta, 2000, High electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed laser deposition, Appl. Phys. Lett., 76, 2740, 10.1063/1.126461

Ohta, 2002, Surface morphology and crystal quality of low resistive indium tin oxide grown on yttria-stabilized zirconia, J. Appl. Phys., 91, 3547, 10.1063/1.1448873

Terzini, 2000, Properties of ITO thin films deposited by RF reactive magnetron sputtering at elevated substrate temperature, Mater. Sci. Eng. B, 77, 110, 10.1016/S0921-5107(00)00477-3

Suzuki, 2001, Pulsed laser deposition of transparent conducting indium tin oxide films in magnetic field perpendicular to plume, Jpn. J. Appl. Phys., 40, L401, 10.1143/JJAP.40.L401

Izumi, 2002, Electrical and structural properties of indium tin oxide films prepared by pulsed laser deposition, J. Appl. Phys., 91, 1213, 10.1063/1.1427137

Takaoka, 2002, High quality ITO film formation by the simultaneous use of cluster ion beam and laser irradiation, Mater. Chem. Phys., 74, 104, 10.1016/S0254-0584(01)00479-5

Ohno, 2006, High rate deposition of tin-doped indium oxide films by reactive magnetron sputtering with unipolar pulsing and plasma emission feedback systems, Sci. Technol. Adv. Mater., 7, 56, 10.1016/j.stam.2005.11.005

Agura, 2003, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Thin Solid Films, 445, 263, 10.1016/S0040-6090(03)01158-1

Park, 2006, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition, Thin Solid Films, 513, 90, 10.1016/j.tsf.2006.01.051

Park, 2006, Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition, Appl. Surf. Sci., 253, 1522, 10.1016/j.apsusc.2006.02.046

Sato, 2005, Structural, electrical, and optical properties of transparent conductive In2O3–SnO2 films, J. Vac. Sci. Technol. A, 23, 1167, 10.1116/1.1894421

Yagi, 2005, Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement, J. Vac. Sci. Technol. A, 23, 1180, 10.1116/1.1872014

Iwase, 2006, Electrical properties of indium-tin oxide films deposited on nonheated substrates using a planar-magnetron sputtering system and a facing-targets sputtering system, J. Vac. Sci. Technol. A, 24, 65, 10.1116/1.2134711

Kobayakawa, 2006, Charateristics of Al doped zinc oxide (AZO) thin films deposited by RF magnetron sputtering, Nucl. Instrum. Methods—Phys. Res. B, 249, 536, 10.1016/j.nimb.2006.03.047

Koh, 2006, Material properties and growth control of undoped and Sn-doped In2O3 thin films prepared by using ion beam technologies, Thin Solid Films, 496, 81, 10.1016/j.tsf.2005.08.251

Lin, 2006, Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere, Mater. Sci. Eng. B, 129, 39, 10.1016/j.mseb.2005.12.013

Oh, 2006, Transparent conductive Al-doped ZnO films for liquid crystal displays, J. Appl. Phys., 99, 124505, 10.1063/1.2206417

Omoto, 2006, Effects of substrate temperature on tin-doped indium oxide films deposited by dc arc discharge ion plating, Vacuum, 80, 783, 10.1016/j.vacuum.2005.11.031

Rogozin, 2006, Plasma influence on the properties and structure of indium tin oxide films produced by reactive middle frequency pulsed magnetron sputtering, Thin Solid Films, 496, 197, 10.1016/j.tsf.2005.08.273

Suzuki, 2006, Transparent conductive thin films of Sn doped In2O3 grown by aerosol-assisted CVD using InIII acetylacetonate with 5 mol % SnIV bis-acetylacetonate dibromide dissolved in acetylacetone, Chem. Vapor Deposition, 12, 608, 10.1002/cvde.200506379

Yaglioglu, 2006, A study of amorphous and crystalline phases in In2O3–10wt% ZnO thin films deposited by DC magnetron sputtering, Thin Solid Films, 496, 89, 10.1016/j.tsf.2005.08.255

Yang, 2006, The effect of annealing treatment on microstructure and properties of indium tin oxides films, Mater. Sci. Eng. B, 129, 154, 10.1016/j.mseb.2006.01.012

Liu, 2005, A transparent and conductive film prepared by RF magnetron cosputtering system at room temperature, Jpn. J. Appl. Phys., 44, 5119, 10.1143/JJAP.44.5119

Liu, 2006, Electrical, optical and material properties of ZnO-doped indium-tin oxide films prepared using radio frequency cosputtering system at room temperature, Jpn. J. Appl. Phys., 45, 3526, 10.1143/JJAP.45.3526

Yang, 2006, Opto-electronic properties of titanium-doped indium-tin-oxide films deposited by RF magnetron sputtering at room temperature, Mater. Sci. Eng. B, 134, 68, 10.1016/j.mseb.2006.07.027

Manoj, 2006, Growth and characterization of indium oxide thin films prepared by spray pyrolysis, Opt. Mater., 28, 1405, 10.1016/j.optmat.2005.08.012

Nakazawa, 2006, The electronic properties of amorphous and crystallized In2O3 films, J. Appl. Phys., 100, 093706, 10.1063/1.2358829

Kumar, 2005, High mobility undoped amorphous indium zinc oxide transparent thin films, J. Appl. Phys., 98, 073701, 10.1063/1.2060957

Pan, 2005, Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films, J. Vac. Sci. Technol. A, 23, 1187, 10.1116/1.1924473

Ito, 2006, Electrical and optical properties of amorphous indium zinc oxide films, Thin Solid Films, 496, 99, 10.1016/j.tsf.2005.08.257

Martins, 2006, Electron transport and optical characteristics in amorphous indium zinc oxide films, J. Non-Cryst. Solids, 352, 1471, 10.1016/j.jnoncrysol.2006.02.009

Yaglioglu, 2006, High-mobility amorphous In2O3–10wt% ZnO thin film transistors, Appl. Phys. Lett., 89, 062103, 10.1063/1.2335372

Delahoy, 2005, Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering, J. Vac. Sci. Technol. A, 23, 1215, 10.1116/1.1894423

van Hest, 2005, Titanium-doped indium oxide: a high-mobility transparent conductor, Appl. Phys. Lett., 87, 032111, 10.1063/1.1995957

Abe, 2006, Titanium-doped indium oxide films prepared by DC magnetron sputtering using ceramic target, J. Mater. Sci., 41, 7580, 10.1007/s10853-006-0844-7

Huang, 2005, Properties of transparent conductive In2O3:Mo thin films deposited by channel spark ablation, J. Vac. Sci. Technol. A, 23, 1350, 10.1116/1.1991871

Li, 2005, The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target, Semicond. Sci. Technol., 20, 823, 10.1088/0268-1242/20/8/033

Miao, 2006, Transparent conducting In2O3:Mo thin films Prepared by reactive direct current magnetron sputtering at room temperature, Thin Solid Films, 500, 70, 10.1016/j.tsf.2005.11.012

van Hest, 2006, High-mobility molybdenum doped indium oxide, Thin Solid Films, 496, 70, 10.1016/j.tsf.2005.08.314

Lim, 2005, Highly transparent and low resistance gallium-doped indium oxide contact to p-type GaN, Appl. Phys. Lett., 87, 042109, 10.1063/1.1999012

Newhouse, 2005, High electron mobility W-doped In2O3 thin films by pulsed laser deposition, Appl. Phys. Lett., 87, 112108, 10.1063/1.2048829

Bizo, 2005, The great potential of coupled substitutions in In2O3 for the generation of bixbyite-type transparent conducting oxides, In2–2xMxSnxO3, Solid State Commun., 136, 163, 10.1016/j.ssc.2005.07.009

Chen, 2005, Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition, Appl. Surf. Sci., 252, 1561, 10.1016/j.apsusc.2005.02.137

Park, 2005, Investigation of transparent conductive oxide Al-doped ZnO films produced by pulsed laser deposition, Jpn. J. Appl. Phys., 44, 8027, 10.1143/JJAP.44.8027

Wang, 2005, Preparation and characterization of high performance direct current magnetron sputtered ZnO:Al films, Thin Solid Films, 491, 54, 10.1016/j.tsf.2005.05.021

Yoo, 2005, High transmittance and low resistive ZnO:Al films for thin film solar cells, Thin Solid Films, 480–481, 213, 10.1016/j.tsf.2004.11.010

Ellmer, 2006, Electrical transport parameters of heavily-doped zinc oxide and zinc magnesium oxide single and multilayer films heteroepitaxially grown on oxide single crystals, Thin Solid Films, 496, 104, 10.1016/j.tsf.2005.08.269

Jeong, 2006, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films, 506–507, 180, 10.1016/j.tsf.2005.08.213

Joseph, 2006, Studies on the structural, electrical and optical propertes of Al-doped ZnO thin films prepared by chemical spray deposition, Ceram. Int., 32, 487, 10.1016/j.ceramint.2005.03.029

Kluth, 2006, Comparative material study on RF and DC magnetron sputtered ZnO:Al films, Thin Solid Films, 502, 311, 10.1016/j.tsf.2005.07.313

Lim, 2006, Improved electrical properties of ZnO:Al transparent conducting oxide films using a substrate bias, Superlattice Microstruct., 39, 107, 10.1016/j.spmi.2005.08.077

Minami, 2006, New transparent conducting Al-doped ZnO film preparation techniques for improving resistivity distribution in magnetron sputtering deposition, Jpn. J. Appl. Phys., 45, L409, 10.1143/JJAP.45.L409

T. Minami, Y. Ohtani, T. Miyata, T. Kuboi, Transparent Conducting AZO Thin films prepared by magnetron sputtering with DC and RF power applied in combination, J. Vac. Sci. Technol. A, to be published.

Moon, 2006, The influence of substrate temperature on the properties of aluminium-doped zinc oxide thin films deposited by DC magnetron sputtering, J. Mater. Sci.: Mater. Electron., 17, 973, 10.1007/s10854-006-9039-x

Park, 2006, Growth of transparent conductive Al-doped ZnO thin films and device applications, Jpn. J. Appl. Phys., 45, 8453, 10.1143/JJAP.45.8453

Qiao, 2006, Dielectric modeling of transmittance spectra of thin ZnO:Al films, Thin Solid Films, 496, 520, 10.1016/j.tsf.2005.08.282

Ruske, 2006, Process stabilization for large area reactive MF-sputtering of Al-doped ZnO, Thin Solid Films, 502, 44, 10.1016/j.tsf.2005.07.232

Scukla, 2006, Growth of transparent conducting Al doped ZnO films by pulsed laser deposition, J. Cryst. Growth, 294, 427, 10.1016/j.jcrysgro.2006.06.035

Sittinger, 2006, ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells, Thin Solid Films, 496, 16, 10.1016/j.tsf.2005.08.177

Xu, 2006, Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method, Mater. Res. Bull., 4, 354, 10.1016/j.materresbull.2005.08.014

Xu, 2006, Al-doping effects on structure, electrical and optical properties of c-axis-oriented ZnO:Al thin films, Mater. Sci. Semicond. Proc., 9, 132, 10.1016/j.mssp.2006.01.082

Choi, 2005, Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by RF magnetron sputter, J. Eur. Ceram. Soc., 25, 2161, 10.1016/j.jeurceramsoc.2005.03.023

Hsu, 2005, Optical and transport properties of undoped and Al-, Ga- and In-doped ZnO thin films, J. Optoelectron. Adv. Mater., 7, 3039

Yamamoto, 2006, Effects of oxygen-gas flow rate on lattice dynamics and microstructure for Ga-doped ZnO thin films prepared by reactive plasma deposition, Superlattice Microstruct., 38, 369, 10.1016/j.spmi.2005.08.007

Bhosle, 2006, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO, Appl. Phys. Lett., 88, 032106, 10.1063/1.2165281

Bhosle, 2006, Electrical properties of transparent and conducting Ga doped ZnO, J. Appl. Phys., 100, 033713, 10.1063/1.2218466

Bhosle, 2006, Microstructure and electrical property correlations in Ga:ZnO transparent conducting thin films, J. Appl. Phys., 100, 093519, 10.1063/1.2360777

Kim, 2006, Influence of substrate temperature and oxygen/argon flow ratio on the electrical and optical properties of Ga-doped ZnO thin films prepared by RF magnetron sputtering, Cryst. Res. Technol., 41, 1194, 10.1002/crat.200610748

Shirakata, 2006, Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition, Superlattices Microstruct., 39, 218, 10.1016/j.spmi.2005.08.045

Abduev, 2007, The structural and electrical properties of Ga-doped ZnO and Ga,B-codoped ZnO thin films: the effects of additional boron impurity, Sol. Energy Mater. Sol. Cells, 91, 258, 10.1016/j.solmat.2006.09.008

T. Miyata, Y. Honma, T. Minami, Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation, J. Vac. Sci. Technol. A, to be published.

Chen, 2006, Fabrication and vacuum annealing of transparent conductive Ga-doped Zn0.9Mg0.1O thin films prepared by pulsed laser deposition technique, Appl. Surf. Sci., 252, 8657, 10.1016/j.apsusc.2005.12.018

Norton, 2006, Charge carrier and spin doping in ZnO thin films, Thin Solid Films, 496, 160, 10.1016/j.tsf.2005.08.246

Tominaga, 2001, Effect of insertion of thin ZnO layer in transparent conductive ZnO:Al film, Thin Solid Films, 386, 267, 10.1016/S0040-6090(00)01679-5

Ellmer, 2000, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties, J. Phys. D: Appl. Phys., 33, R17, 10.1088/0022-3727/33/4/201

Ramamoorthy, 2006, Review of material properties of IZO thin films as epi-n-TCOs in opto-electronic (SIS solar cells, polymeric LEDs) devices, Mater. Sci. Eng. B, 126, 1, 10.1016/j.mseb.2005.08.117

Bellingham, 1992, Intrinsic performance limits in transparent conducting oxides, J.Mater. Sci. Lett., 11, 263, 10.1007/BF00729407

Ohno, 2006, Ferromagnetism in transparent thin films of Fe-doped indium tin oxide, Jpn. J. Appl. Phys., 45, L957, 10.1143/JJAP.45.L957

Ogale, 2003, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ, Phys. Rev. Lett., 91, 077205, 10.1103/PhysRevLett.91.077205

Peleckis, 2006, High temperature ferromagnetism in Ni-doped In2O3 and indium-tin oxide, Appl. Phys. Lett., 89, 022501, 10.1063/1.2220529

Jayakumar, 2006, Synthesis of manganese doped ZnO single crystals and their magnetization studies, J. Cryst. Growth, 294, 432, 10.1016/j.jcrysgro.2006.06.036

Bhatti, 2006, Observation of room temperature ferromagnetism in nanocrystalline ZnO:Co system, J. Phys. D: Appl. Phys., 39, 4909, 10.1088/0022-3727/39/23/001

Liu, 2006, Structural, optical, and magnetic properties of co-doped ZnO films, J. Cryst. Growth, 296, 135, 10.1016/j.jcrysgro.2006.08.034

Zukova, 2006, Giant moment and magnetic anisotropy in co-doped ZnO films grown by pulse-injection metal organic chemical vapor deposition, Appl. Phys. Lett., 89, 232503, 10.1063/1.2399939

Suzuki, 1998, Enhanced electrical conductivity of indium tin oxide by Ag addition, Jpn. J. Appl. Phys., 37, 34, 10.1143/JJAP.37.34

Suzuki, 2000, DSC of silver-added indium-tin-oxide (ITO) transparent conductive materials, Thermochim. Acta, 352–353, 87, 10.1016/S0040-6031(99)00442-6

Hultåker, 2001, Electrical and optical properties of sputter deposited tin doped indium oxide thin films with silver additive, Thin Solid Films, 392, 305, 10.1016/S0040-6090(01)01048-3

Houng, 2005, Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol–gel technique, Appl. Phys. Lett., 87, 251922, 10.1063/1.2149223

Lu, 2005, Microstructure of sputter deposited tin doped indium oxide films with silver additive, Thin Solid Films, 479, 107, 10.1016/j.tsf.2004.11.209

Omata, 2006, Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation, Thin Solid Films, 503, 22, 10.1016/j.tsf.2005.09.200

Nadaud, 1997, Indium oxide ceramics with titania additions, Key Eng. Mater., 132–136, 928, 10.4028/www.scientific.net/KEM.132-136.928

Nadaud, 1997, Titania as a sintering additive in indium oxide ceramics, J. Am. Ceram. Soc., 80, 1208, 10.1111/j.1151-2916.1997.tb02966.x

Suzuki, 1998, Sintering indium-tin-oxide with vanadium oxide additive, Mater. Sci. Eng. B, 54, 46, 10.1016/S0921-5107(98)00125-1

Gao, 1999, Effects of heat treatment on the microstructure of nanophase indium-tin oxide, Nanostruct. Mater., 11, 611, 10.1016/S0965-9773(99)00347-5

Udawatte, 2000, Sintering and additive free hydrothermally derived indium tin oxide powders in air, J. Solid State Chem., 154, 444, 10.1006/jssc.2000.8863

Udawatte, 2001, Fabrication of low-porosity indium tin oxide ceramics in air from hydrothermally prepared powder, J. Am. Ceram. Soc., 84, 251, 10.1111/j.1151-2916.2001.tb00645.x

Yamamura, 2001, Preparation of In2O3 fine powders and their two-step sintering, J. Ceram. Soc. Jpn., 109, 1000, 10.2109/jcersj.109.1276_1000

Kim, 2002, Rapid rate sintering of nanocrystalline indium tin oxide ceramics: particle size effect, Mater. Lett., 52, 114, 10.1016/S0167-577X(01)00377-9

Shigesato, 2000, ITO deposition by reactive dc magnetron sputtering with ozone introduction, J. Vac. Soc. Jpn., 43, 779, 10.3131/jvsj.43.779

Lai, 2003, Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing, Scr. Mater., 49, 441, 10.1016/S1359-6462(03)00296-3

Rogozin, 2006, Annealing of indium tin oxide films by electric current: properties and structure evolution, Appl. Phys. Lett., 89, 061908, 10.1063/1.2335808

Fukano, 2005, Enhanced carrier densities in indium tin oxide films covered with nanoparticles of fluorine-doped tin oxide for transparent conducting electrodes, Jpn. J. Appl. Phys., 44, 8747, 10.1143/JJAP.44.8747

Fukano, 2005, Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition, J. Appl. Phys., 97, 084314, 10.1063/1.1866488

Furuoka, 2006, Irradiation effects with 100MeV Xe ions on optical properties of Al-doped ZnO films, Nucl. Instrum. Methods—Phys. Res. B, 250, 295, 10.1016/j.nimb.2006.04.146

Sugai, 2006, Electrical conductivity increase of Al-doped ZnO films induced by high-energy-heavy ions, Nucl. Instrum. Methods—Phys. Res. B, 250, 291, 10.1016/j.nimb.2006.04.126

Betz, 2006, Thin films engineering of indium tin oxide: large area flat panel displays application, Surf. Coating Technol., 200, 5751, 10.1016/j.surfcoat.2005.08.144

Bae, 2007, Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD, J. Electrochem. Soc., 154, D34, 10.1149/1.2382346

Stjerna, 1994, Electrical and optical properties of tin oxide films doped with oxygen vacancies, F, Sb, or Mo, J. Appl. Phys., 76, 3798, 10.1063/1.357383

Kim, 2004, Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition, Appl. Phys. Lett., 84, 218, 10.1063/1.1639515

Giraldi, 2006, Deposition of controlled thickness ultrathin SnO2:Sb films by spin-coating, J. Nanosci. Nanotechnol., 6, 3849, 10.1166/jnn.2006.610

Hirata, 1996, Synthesis and optoelectronic characterization of gallium doped zinc oxide transparent electrodes, Thin Solid Films, 288, 29, 10.1016/S0040-6090(96)08862-1

Hirata, 1996, High transmittance-low resistivity ZnO:Ga films by laser ablation, J. Vac. Sci. Technol. A, 14, 791, 10.1116/1.580391

Segura, 2006, High conductivity of Ga-doped rock-salt ZnO under pressure: hint on deep-ultraviolet-transparent conducting oxides, Appl. Phys. Lett., 88, 011910, 10.1063/1.2161392

Nakagawara, 2006, Moisture-resistant ZnO transparent conductive films with Ga heavy doping, Appl. Phys. Lett., 89, 091904, 10.1063/1.2337542

Shigesato, 2000, Early stages of ITO deposition on glass or polymer substrates, Vacuum, 59, 614, 10.1016/S0042-207X(00)00324-9

Cairns, 2000, Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates, Appl. Phys. Lett., 76, 1425, 10.1063/1.126052

Leterrier, 2006, Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays, Thin Solid Films, 460, 156, 10.1016/j.tsf.2004.01.052

Cho, 2003, Surface modification of polymers by ion-assisted reaction, Thin Solid Films, 445, 332, 10.1016/S0040-6090(03)01176-3

Itoyama, 1979, Propertes of Sn-doped indium oxide coatings deposited on polyester film by high rate reactive sputtering, J. Electrochem. Soc., 126, 691, 10.1149/1.2129111

Brett, 1983, High rate planar magnetron deposition of transparent, conducting, and heat reflecting films on glass and plastic, J. Vac. Sci. Technol. A, 1, 352, 10.1116/1.572133

Jin, 1987, Transparent and infrared-reflecting ZnO:Al films reactively sputtered onto polyester foil, Appl. Opt., 26, 3191, 10.1364/AO.26.003191

Carcia, 2002, Low-stress indium-tin-oxide thin films RF magnetron sputtered on polyester substrates, Appl. Phys. Lett., 81, 1800, 10.1063/1.1504874

Wong, 2004, Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate, Thin Solid Films, 466, 225, 10.1016/j.tsf.2004.01.114

Dekkers, 2006, Role of Sn doping in In2O3 thin films on polymer substrates by pulsed-laser deposition at room temperature, Appl. Phys. Lett., 88, 151908, 10.1063/1.2195096

Kim, 2006, Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition, Appl. Surf. Sci., 252, 4834, 10.1016/j.apsusc.2005.07.134

Qiu, 2006, Influence of the SiO and SiON layer on IZO thin films deposited on PET by inclination opposite target type DC magnetron sputtering method, Int. J. Mod. Phys. B, 20, 3640, 10.1142/S021797920604012X

Fortunato, 2006, High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature, Thin Solid Films, 502, 104, 10.1016/j.tsf.2005.07.311

Stjerna, 1990, Transparent conducting SnOx films high rate reactively sputtered onto polyester foil, Appl. Opt., 29, 447, 10.1364/AO.29.000447

Martin, 2004, Properties of multilayer transparent conducting films, Thin Solid Films, 461, 309, 10.1016/j.tsf.2004.01.103

Han, 2005, Characterization of the physical properties of indium tin oxide on polyethylene napthalate, J. Appl. Phys., 98, 083705, 10.1063/1.2106013

Han, 2006, Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air, J. Appl. Phys., 100, 083715, 10.1063/1.2357647

Han, 2006, Study of the substrate treatment effect on initial growth of indium-tin-oxide films on polymer substrate using in situ conductance measurement, Thin Solid Films, 496, 58, 10.1016/j.tsf.2006.02.029

Cho, 2006, Optical spectra of indium-tin-oxide films deposited on flexible colorless polyimide substrates, J. Korean Phys. Soc., 48, 468

Fortunato, 2003, Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence, Thin Solid Films, 442, 121, 10.1016/S0040-6090(03)00958-1

Kim, 2000, Effects of oxygen radical on the properties of indium tin oxide thin films deposited at room temperature by oxygen ion beam assisted evaporation, Thin Solid Films, 377–378, 103, 10.1016/S0040-6090(00)01392-4

Kim, 2000, Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature, Thin Solid Films, 377–378, 115, 10.1016/S0040-6090(00)01421-8

Bae, 2001, Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system, Nucl. Instrum. Methods—Phys. Res. B, 178, 311, 10.1016/S0168-583X(01)00510-9

Kim, 2006, Low temperature deposition of ITO on organic films by using negative ion assisted dual magnetron sputtering system, Vacuum, 81, 279, 10.1016/j.vacuum.2006.04.003

Kim, 2006, Thickness dependence of electrical properties of ITO films deposited on a plastic substrate by RF magnetron sputtering, Appl. Surf. Sci., 253, 409, 10.1016/j.apsusc.2005.12.097

Jung, 2006, Properties of indium tin oxide on polymer films deposited by low-frequency magnetron sputtering method, Mol. Cryst. Liquid Cryst., 459, 167, 10.1080/15421400600930151

Park, 2006, Substrate effects on the characteristics of (In2O3)1–x(ZnO)x films, J. Korean Phys. Soc., 48, 1624

Woo, 2006, Effect of SiO2 buffer layer on the characteristics of In2O3–ZnO–SnO2 films deposited on PET substrates, J. Korean Phys. Soc., 48, 1579

Hao, 2001, Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates, Appl. Surf. Sci., 183, 137, 10.1016/S0169-4332(01)00582-7

Ma, 2002, Thickness dependence of properties of SnO2:Sb films deposited on flexible substrates, Appl. Surf. Sci., 191, 313, 10.1016/S0169-4332(02)00253-2

Koshi-ishi, 2000, Deposition of well-oriented polycrystalline ITO films on ZnO-coated polymer substrates by dc sputtering, Trans. Mater. Res. Soc. Jpn., 25, 341

Smoukov, 2006, Maskless microetching of transparent conductive oxides (ITO and ZnO) and semiconductors (GaAs) based on reaction-diffusion, Chem. Mater., 18, 4722, 10.1021/cm061468p

Xu, 2006, F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate, Appl. Phys. A, 85, 7, 10.1007/s00339-006-3657-2

Chung, 2006, Ultraviolet curing imprint lithography on flexible indium tin oxide substrates, J. Vac. Sci. Technol. B, 24, 1377, 10.1116/1.2200375

Henry, 2001, Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates, Thin Solid Films, 382, 194, 10.1016/S0040-6090(00)01769-7

Furubayashi, 2005, A transparent metal: Nb-doped anatase TiO2, Appl. Phys. Lett., 86, 252101, 10.1063/1.1949728

Furubayashi, 2006, Novel transparent conducting oxide: anatase Ti1–xNbxO2, Thin Solid Films, 496, 157, 10.1016/j.tsf.2005.08.245

Hitosugi, 2005, Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide, Jpn. J. Appl. Phys., 34, L1063, 10.1143/JJAP.44.L1063

Sheppard, 2006, Electrical properties of niobium-doped titanium dioxide—1: defect disorder, J. Phys. Chem. B, 110, 22447, 10.1021/jp0637025

Sheppard, 2006, Electrical properties of niobium-doped titanium dioxide—2: equilibrium kinetics, J. Phys. Chem. B, 110, 22455, 10.1021/jp063703x

Kawazoe, 1997, p-Type electrical conduction in transparent thin films of CuAlO2, Nature, 389, 939, 10.1038/40087

Ohta, 2003, Frontier of transparent oxide semiconductors, Solid-State Elect., 47, 2261, 10.1016/S0038-1101(03)00208-9

Ohta, 2004, Transparent oxide optoelectronics, Mater. Today, 42, 10.1016/S1369-7021(04)00288-3

Sheng, 2006, p-Type transparent conducting oxides, Phys. Stat. Sol. A, 203, 1891, 10.1002/pssa.200521479

G.P. Smestad, Private Communication.

Cao, 2006, Low resistivity p-ZnO films fabricated by sol–gel spin coating, Appl. Phys. Lett., 88, 251116, 10.1063/1.2215618

Sun, 2006, The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy, Solid State Commun., 140, 345, 10.1016/j.ssc.2006.09.007

Sun, 2006, Hole transport in p-type ZnO films grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Lett., 89, 232101, 10.1063/1.2398908

Wang, 2006, Fabrication and characteristics of the low-resistive p-type thin films by DC reactive magnetron sputtering, Mater. Lett., 60, 912, 10.1016/j.matlet.2005.10.057

Yuldashev, 2006, Electrical and optical properties of ZnO thin films grown on Si substrates, J. Appl. Phys., 100, 013704, 10.1063/1.2209773

Xiao, 2006, Electrical transport properties in nitrogen-doped p-type ZnO thin films, Semicond. Sci. Technol., 21, 1522, 10.1088/0268-1242/21/12/003

Zeng, 2007, Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films, Mater. Lett., 61, 41, 10.1016/j.matlet.2006.04.001

Chen, 2005, p-Type behavior in In-N codoped ZnO thin films, Appl. Phys. Lett., 87, 252106, 10.1063/1.2146309

Chen, 2006, Co-doping effects and electrical transport in In–N doped zinc oxide, Chem. Phys. Lett., 432, 352, 10.1016/j.cplett.2006.10.047

Ahn, 2006, Synthesis and analysis of Ag-doped ZnO, J. Appl. Phys., 100, 093701, 10.1063/1.2364041

Kang, 2006, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett., 88, 202108, 10.1063/1.2203952

Kang, 2006, Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film, Appl. Phys. Lett., 89, 181103, 10.1063/1.2364865

Limpijumnong, 2006, Characterization of As-doped, p-type ZnO by X-ray absorption near-edge structure spectroscopy: theory, Appl. Phys. Lett., 89, 222113, 10.1063/1.2398895

Wang, 2006, As-doped p-type ZnO films by sputtering and thermal diffusion process, J. Appl. Phys., 100, 043704, 10.1063/1.2245192

Xu, 2006, Arsenic doping for synthesis of nanocrystalline p-type ZnO thin films, J. Vac. Sci. Technol. A, 23, 517, 10.1116/1.2194939

Krtschil, 2005, Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic, Appl. Phys. Lett., 87, 262105, 10.1063/1.2149171

Lopatiuk-Tirpak, 2006, Studies of minority carrier diffusion length increase in p-type ZnO:Sb, J. Appl. Phys., 100, 086101, 10.1063/1.2358844

Lim, 2005, Characterizations of phosphorous doped ZnO multi-layer thin films to control carrier concentration, Superlattice Microstruct., 38, 377, 10.1016/j.spmi.2005.08.008

Miao, 2006, p-Type conduction in phosphorous-doped ZnO thin films by MOCVD and thermal activation of the dopant, Appl. Surf. Sci., 252, 7953, 10.1016/j.apsusc.2005.10.001

Vaithianathan, 2006, Electronic structure of p-doped ZnO films with p-type conductivity, J. Nanosci. Nanotechnol., 6, 3422, 10.1166/jnn.2006.025

Yu, 2006, Control of p- and n-type conductivities in p-doped ZnO thin films by using radio-frequency sputtering, Appl. Phys. Lett., 88, 132114, 10.1063/1.2192089

Zeng, 2005, Realization of p-type ZnO films via monodoping of Li acceptor, J. Cryst. Growth, 283, 180, 10.1016/j.jcrysgro.2005.05.071

Zeng, 2006, Identification of acceptor states in Li-doped p-type ZnO thin films, Appl. Phys. Lett., 89, 042106, 10.1063/1.2236225

Xiao, 2006, Fabrication of p-type Li-doped ZnO films by pulsed laser deposition, Appl. Surf. Sci., 253, 895, 10.1016/j.apsusc.2006.01.041

Wang, 2006, Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen, J. Phys. D: Appl. Phys., 39, 4568, 10.1088/0022-3727/39/21/010

Wei, 2006, Formation of p-type MgZnO by nitrogen doping, Appl. Phys. Lett., 89, 102104, 10.1063/1.2345846

Wang, 2006, p-Type Zn1–xMgxO films with Sb doping by radio-frequency magnetron sputtering, Appl. Phys. Lett., 89, 202102, 10.1063/1.2388254

Subrahmanyam, 2006, Electrical and optical properties of reactive dc magnetron sputtered silver doped indium oxide thin films: role of oxygen, Appl. Phys. A, 84, 221, 10.1007/s00339-006-3606-0

Chen, 2006, Zinc oxide doped indium oxide ohmic contacts to p-type GaN, J. Electrochem. Soc., 153, G931, 10.1149/1.2337769

Chen, 2006, p-Type tin-indium oxide films prepared by thermal oxidation of metallic InSn alloy films, Mater. Lett., 60, 3096, 10.1016/j.matlet.2006.02.049

Joshi, 2006, Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties, Appl. Surf. Sci., 252, 2524, 10.1016/j.apsusc.2005.03.239

Miyata, 2006, p-Type semiconducting Cu2O–NiO thin films prepared by magnetron sputtering, J. Mater. Sci., 41, 5531, 10.1007/s10853-006-0271-9

Kakehi, 2003, Properties of copper–scandium oxide thin films prepared by pulsed laser deposition, Thin Solid Films, 445, 294, 10.1016/S0040-6090(03)01174-X

Liu, 2005, First-principles study of bipolar dopability in the CuInO2 transparent semiconductor, Chem. Mater., 17, 5529, 10.1021/cm051048k

Marquardt, 2006, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films, 496, 146, 10.1016/j.tsf.2005.08.316

Vanaja, 2006, p-Type electrical conduction in α-AgGaO2 delafossite thin films, Appl. Phys. Lett., 88, 212103, 10.1063/1.2204757

Hiramatsu, 2003, Wide gap p-type degenerate semiconductor: Mg-doped LaCuOSe, Thin Solid Films, 445, 304, 10.1016/S0040-6090(03)01173-8

Kabbour, 2006, p-Type transparent conductors Sr1–xNaxFCuS and SrF1–xOxCuS: design synthesis and physical properties, J. Mater. Chem., 16, 4165, 10.1039/B610457F

Edwards, 1978, Universality aspects of the metal–nonmetal transition in condensed media, Phys. Rev. B, 17, 2575, 10.1103/PhysRevB.17.2575

Mott, 1990

Grosse, 1979

Mahan, 1981

Hamberg, 1986, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy efficient windows, J. Appl. Phys., 60, R123, 10.1063/1.337534

Burstein, 1954, Anomalous optical absorption limit in InSb, Phys. Rev., 93, 632, 10.1103/PhysRev.93.632

Moss, 1954, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. London Section B, 67, 775, 10.1088/0370-1301/67/10/306

Hamberg, 1984, Band-gap widening in heavily Sn-doped In2O3, Phys. Rev. B, 30, 3240, 10.1103/PhysRevB.30.3240

Sernelius, 1988, Band-gap tailoring of ZnO by means of heavy Al doping, Phys. Rev. B, 37, 10244, 10.1103/PhysRevB.37.10244

Jain, 2006, Band gap widening and narrowing in moderately and heavily doped n-ZnO films, Solid-State Electron., 50, 1420, 10.1016/j.sse.2006.07.001

Makino, 2005, Free-carrier effects on zero- and one-phonon absorption of n-type ZnO, Jpn. J. Appl. Phys., 44, 7275, 10.1143/JJAP.44.7275

Urbach, 1953, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev., 92, 1324, 10.1103/PhysRev.92.1324

Lindhard, 1954, On the properties of a gas of charged particles, Kgl. Danske Videnskab. Selskab. Mater.-Fys. Medd., 28, 1

Hubbard, 1958, Description of collective motions in terms of many-body perturbation theory, II: the correlation energy of a free-electron gas, Proc. R. Soc. London Ser. A, 243, 336, 10.1098/rspa.1958.0003

Singwi, 1968, Electron correlations at metallic densities, Phys. Rev., 176, 589, 10.1103/PhysRev.176.589

Vashishta, 1972, Electron correlations at metallic densities, V, Phys. Rev. B, 6, 875, 10.1103/PhysRevB.6.875

Gerlach, 1977, Scattering of free electrons and dynamical conductivity, vol. XVII, 157

Hamberg, 1986, Optical properties of transparent and heat-reflecting indium tin oxide films: refinements of a model for ionized impurity scattering, J. Appl. Phys., 59, 2950, 10.1063/1.336958

Wooten, 1972

Ederth, 2003, Indium tin oxide films made from nanoparticles: models for the optical and electrical properties, Thin Solid Films, 445, 199, 10.1016/S0040-6090(03)01164-7

Ederth, 2003, Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles, Phys. Rev. B, 68, 155410, 10.1103/PhysRevB.68.155410

Ederth, 2005, Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air, Appl. Phys. A, 81, 1363, 10.1007/s00339-005-3264-7

Solieman, 2006, Modeling of optical and electrical properties of In2O3:Sn coatings made by various techniques, Thin Solid Films, 502, 205, 10.1016/j.tsf.2005.07.277

Hamberg, 1985, Transparent and infrared-reflecting indium-tin-oxide films: quantitative modeling of the optical properties, Appl. Opt., 24, 1815, 10.1364/AO.24.001815

Eriksson, 1985, Dielectric function of sputter-deposited silicon dioxide and silicon nitride films in the thermal infrared, Appl. Opt., 24, 745, 10.1364/AO.24.000745

Eriksson, 1986, Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation, J. Appl. Phys., 60, 2081, 10.1063/1.337212

Eriksson, 1985, Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering, Sol. Energy Mater., 12, 319, 10.1016/0165-1633(85)90001-2

Karlsson, 2001, Annual energy window performance vs. glazing thermal emittance: the relevance of very low emittance values, Thin Solid Films, 392, 345, 10.1016/S0040-6090(01)01055-0

Haacke, 1976, New figure of merit for transparent conductors, J. Appl. Phys., 47, 4086, 10.1063/1.323240

Haacke, 1977, Transparent conducting coatings, Annu. Rev. Mater. Sci., 7, 73, 10.1146/annurev.ms.07.080177.000445

Hamberg, 1982, High quality transparent heat reflectors of reactively evaporated indium tin oxide, Appl. Phys. Lett., 40, 362, 10.1063/1.93103

Hamberg, 1983, Color properties of transparent and heat-reflecting MgF2-coated indium-tin-oxide, Appl. Opt., 22, 609, 10.1364/AO.22.000609

Jiang, 1988, Low-refractive-index indium-tin-oxyfluoride thin films made by high-rate reactive dc magnetron sputtering, Appl. Opt., 27, 2847, 10.1364/AO.27.002847

Yin, 1991, Antireflection coatings of sputter-deposited SnOxFy and SnNxFy, Proc. Soc. Photo-Opt. Instrum. Eng., 1536, 149

Jin, 1988, Optical properties of sputter-deposited ZnO:Al thin films, J. Appl. Phys., 64, 5117, 10.1063/1.342419

Ederth, 2002, Electrical and optical properties of thin films prepared by spin coating a dispersion of nano-sized tin-doped indium oxide particles, Smart Mater. Struct., 11, 675, 10.1088/0964-1726/11/5/308

Ederth, 2003, Characterization of porous indium tin oxide thin films using effective medium theory, J. Appl. Phys., 93, 984, 10.1063/1.1532934

Sheng, 1980, Fluctuation-induced tunneling conduction in disordered materials, Phys. Rev. B, 21, 2180, 10.1103/PhysRevB.21.2180

Wang, 1994, Electronic transport properties of KxC70 thin films II, Phys. Rev. B, 49, 15890, 10.1103/PhysRevB.49.15890

Aikens, 1999, The preparation and characterization of nanocrystalline indium tin oxide films, Mater. Res. Soc. Symp. Proc., 536, 377, 10.1557/PROC-536-377

Puetz, 2005, Chemical nanotechnology for transparent conducting coatings on thin-glass and plastic-foil substrates, Proc. Soc. Inf. Display, 13, 321, 10.1889/1.1904934

Al-Dahoudi, 2006, Comparative study of transparent conductive In2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension, Thin Solid Films, 502, 193, 10.1016/j.tsf.2005.07.273

Kim, 2006, Preparation and sintering of nanocrystalline ITO powders with different SnO2 content, J. Eur. Ceram. Soc., 26, 73, 10.1016/j.jeurceramsoc.2004.10.009

Mbarek, 2006, Screen-printed tin-doped indium oxide (ITO) films for NH3 gas sensing, Mater. Sci. Eng. C, 26, 500, 10.1016/j.msec.2005.10.037

Ogi, 2006, Characterication of dip-coated ITO films derived from nanoparticles synthesized by low-pressure spray pyrolysis, J. Nanoparticle Res., 8, 343, 10.1007/s11051-005-9006-0

Seo, 2006, Synthesis and electrical characterization of the polymorphic indium tin oxide nanocrystalline powders, J. Am. Ceram. Soc., 89, 3431, 10.1111/j.1551-2916.2006.01254.x

Kim, 1999, Preparation of ultrafine monodispersed indium-tin oxide particles in AOT-based reverse microemulsions as nanoreactors, Langmuir, 15, 1599, 10.1021/la9815906

Kim, 2000, Preparation of indium-tin oxide particles in shear-induced multilamellar vesicles (sperulites) as chemical reactors, Chem. Mater., 12, 996, 10.1021/cm9905545

Wang, 1999, Synthesis of zinc oxide nanoparticles with controlled morphology, J. Mater. Chem., 9, 2871, 10.1039/a907098b

Ba, 2006, Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration, Chem. Mater., 18, 2848, 10.1021/cm060548q

Song, 2006, Preparation of indium tin oxide nanoparticles and their application to near IR-reflective films, Curr. Appl. Phys., 6, 791, 10.1016/j.cap.2005.04.041

Xu, 2006, Synthesis of tin-doped indium oxide nanoparticles by an ion-exchange and hydrothermal process, Mater. Lett., 60, 983, 10.1016/j.matlet.2005.10.062

Carotenuto, 2006, Preparation and characterization of transparent/conductive nano-composites films, J. Mater. Sci., 41, 5587, 10.1007/s10853-006-0253-y

Fischer-Cripps, 1995, Stress and fracture probability in evacuated glazing, Build. Environ., 30, 41, 10.1016/0360-1323(94)E0032-M

Garrison, 1995, Manufacture and cost of vacuum glazing, Sol. Energy, 55, 151, 10.1016/0038-092X(95)00046-T

Lenzen, 1997, Long-term field tests of vacuum glazing, Sol. Energy, 61, 11, 10.1016/S0038-092X(97)00038-8

Turner, 1997, Measurement of heat flow through vacuum glazing at elevated temperature, Int. J. Heat Mass Transfer, 40, 1437, 10.1016/S0017-9310(96)01895-4

Collins, 1998, Current status of the science and technology of vacuum glazing, Sol. Energy, 62, 189, 10.1016/S0038-092X(98)00007-3

Simko, 1999, Determination of the overall heat transmission coefficient (U value) of vacuum glazing, ASHRAE Trans., 105, 891

Fang, 2007, Low emittance coatings and the thermal performance of vacuum glazing, Sol. Energy, 81, 8, 10.1016/j.solener.2006.06.011

Wilson, 1998, Heat conduction through the support pillars in vacuum glazing, Sol. Energy, 63, 393, 10.1016/S0038-092X(98)00079-6

Simko, 1998, Temperature-induced stresses in vacuum glazing: modelling and experimental validation, Sol. Energy, 63, 1, 10.1016/S0038-092X(98)00052-8

Wang, 2007, Stresses in vacuum glazing fabricated at low temperature, Sol. Energy Mater. Sol. Cells, 91, 290, 10.1016/j.solmat.2006.10.007

Fang, 2005, Complex multimaterial insulating frames for windows with evacuated glazing, Sol. Energy, 79, 245, 10.1016/j.solener.2004.11.009

Fang, 2006, The effect of glass coating emittance and frame rebate on heat transfer through vacuum and electrochromic vacuum glazed windows, Sol. Energy Mater. Sol. Cells, 90, 2683, 10.1016/j.solmat.2006.04.006

Asano, 1999, Advanced window incorporating vacuum glazing, Proc. Soc. Photo-Opt. Instrum. Eng., 3789, 8

Griffiths, 1998, Fabrication of evacuated glazing at low temperature, Sol. Energy, 63, 243, 10.1016/S0038-092X(98)00019-X

Ng, 2003, Photodesorption of gases in vacuum glazing, J. Vac. Sci. Technol. A, 21, 1776, 10.1116/1.1604132

Ng, 2005, Thermal and optical evolution of gas in vacuum glazing, Mater. Sci. Eng., 119, 258, 10.1016/j.mseb.2004.12.079

Minaai, 2005, Study of the outgassing behavior of SnO2:F films on glass in vacuum under external energy excitation, Mater. Sci. Eng. B, 119, 252, 10.1016/j.mseb.2004.12.093

Granqvist, 1991, Materials for radiative cooling to low temperatures, 168

Ribbing, 1993, Radiative control of outdoor condensation, Ann. Acad. Reg. Sci. Upsaliensis, 30, 115

Argiriou, 1994, Assessment of the radiative cooling potential of a collector using hourly weather data, Energy, 19, 879, 10.1016/0360-5442(94)90040-X

Cucumo, 2006, Experimental testing of correlations to calculate the atmospheric “transparency window” emissivity coefficient, Sol. Energy, 80, 1031, 10.1016/j.solener.2005.06.012

Bahadori, 1978, Passive cooling systems in Iranian architecture, Sci. Am., 238, 144, 10.1038/scientificamerican0278-144

Bahadori, 1986, Natural air-conditioning systems, vol. 3, 283

Eriksson, 1982, Radiative cooling computed for model atmospheres, Appl. Opt., 21, 4381, 10.1364/AO.21.004381

Berdahl, 1984, Radiative cooling with MgO and/or LiF layers, Appl. Opt., 23, 370, 10.1364/AO.23.000370

Erell, 1992, A radiative cooling system using water as a heat exchange medium, Arch. Sci. Rev., 35, 39, 10.1080/00038628.1992.9696712

Erell, 1996, Heating experiments with a radiative cooling system, Build. Environ., 31, 509, 10.1016/0360-1323(96)00030-3

Erell, 1999, Analysis and experimental verification of an improved cooling radiator, Renew. Energy, 16, 700, 10.1016/S0960-1481(98)00255-9

Erell, 2000, Radiative cooling of buildings with flat-plate solar collectors, Build. Environ., 35, 297, 10.1016/S0360-1323(99)00019-0

Al-Nimr, 1998, A theoretical and experimental investigation of a radiative cooling system, Sol. Energy, 63, 367, 10.1016/S0038-092X(98)00098-X

Michalakakou, 1998, The cooling potential of a metallic nocturnal radiator, Energy Build., 28, 251, 10.1016/S0378-7788(98)00006-1

Tazawa, 1999, Optical properties and radiative cooling power of white paints, vol. 1, 485

Meir, 2002, A study of a polymer-based radiative cooling system, Sol. Energy, 73, 403, 10.1016/S0038-092X(03)00019-7

Dimoudi, 2006, The cooling performance of a radiator based roof component, Sol. Energy, 80, 1039, 10.1016/j.solener.2005.06.017

Lushiku, 1982, Radiative cooling with selectively infrared-emitting ammonia gas, J. Appl. Phys., 53, 5526, 10.1063/1.331487

Lushiku, 1984, Radiative cooling with selectively infrared-emitting gases, Appl. Opt., 23, 1835, 10.1364/AO.23.001835

Nilsson, 1992, A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene, Sol. Energy Mater. Sol. Cells, 28, 175, 10.1016/0927-0248(92)90010-M

Mastai, 2001, TiO2 nanocrystalline pigmented polyethylene foils for radiative cooling applications: synthesis and characterization, Langmuir, 17, 7118, 10.1021/la010370g

Benlattar, 2006, Thin cadmium sulphide film for radiative cooling application, Opt. Commun., 267, 65, 10.1016/j.optcom.2006.06.050

Trombe, 1964, Descriptions des experiences sur le refroidissement des corps terrestres, J. Rech. CNRS, 65, 563

Trombe, 1967, Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines regions du monde, Rev. Gén. Therm., 6, 1285

Nilsson, 1992, Condensation of water by radiative cooling, Renew. Energy, 5, 310, 10.1016/0960-1481(94)90388-3

Hamberg, 1987, Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience, Appl. Opt., 26, 2131, 10.1364/AO.26.002131

Werner, 2006, Condensation tests on glass samples for energy efficient windows

Ribbing, 1990, Beryllium oxide: a frost-preventing insulator, Opt. Lett., 15, 882, 10.1364/OL.15.000882

Ribbing, 1993, Reststrahlen material bilayers: an option for tailoring in the infrared, Appl. Opt., 32, 5531, 10.1364/AO.32.005531

Ribbing, 1995, Selective suppression of thermal emission from radomes and materials selection therefor, Opt. Eng., 34, 3314, 10.1117/12.212906

A. Roos, Unpublished Data.

Goswami, 1995, Engineering of solar photocatalytic detoxification and disinfection processes, vol. 10, 165

Fujishima, 1999

2002

Abrams, 2005, Nanosize semiconductors for photooxidation, Crit. Rev. Solid State Mater. Sci., 30, 153, 10.1080/10408430500200981

Anpo, 2005, The preparation and characterization of highly efficient titanium oxide-based photofunctional materials, Annu. Rev. Mater. Res., 35, 1, 10.1146/annurev.matsci.35.100303.121340

Anpo, 2006, Single-site photocatalytic solids for the decomposition of undersirable molecules, Chem. Commun., 3273, 10.1039/b606738g

Hashimoto, 2005, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269

Parkin, 2005, Self-cleaning coatings, J. Mater. Chem., 15, 1689, 10.1039/b412803f

Ando, 2006, Photo-catalytic TiO2 film deposition by atmosperic TPCVD, Vacuum, 80, 1278, 10.1016/j.vacuum.2006.01.066

Pascoalino, 2006, Gas-phase photocatalytic decontamination using polymer supported TiO2, Appl. Catal. B: Environ., 68, 68, 10.1016/j.apcatb.2006.08.001

Ao, 2004, Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presence of NO, SO2, and VOCs, Appl. Catal. B: Environ., 54, 41, 10.1016/j.apcatb.2004.06.004

Ao, 2004, Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO2, Appl. Catal. B: Environ., 49, 187, 10.1016/j.apcatb.2003.12.011

Jeong, 2005, Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates, J. Photochem. Photobiol., 169, 279, 10.1016/j.jphotochem.2004.07.014

Aoki, 2006, Photocatalytic degradation of formaldehyde and toluene mixtures in air with a nitrogen-doped TiO2 photocatalyst, Chem. Lett., 35, 616, 10.1246/cl.2006.616

Cao, 2006, Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase photocatalytic oxidation of VOCs, Appl. Catal. B: Environ., 68, 99, 10.1016/j.apcatb.2006.07.022

Tidahy, 2006, New Pd/hierarchical macro–mesoporous ZrO2, TiO2 and ZrO2–TiO2 catalysts for VOCs total oxidation, Appl. Catal. A: Gen., 310, 61, 10.1016/j.apcata.2006.05.020

Toma, 2006, Photocatalytic removal of nitrogen oxides via titanium dioxide, Environ. Chem. Lett., 2, 117, 10.1007/s10311-004-0087-2

Tseng, 2006, Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity, Nanotechnology, 17, 2490, 10.1088/0957-4484/17/10/009

Demeestere, 2005, Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethylsulfide on modified titanium dioxide, Appl. Catal. B: Environ., 61, 140, 10.1016/j.apcatb.2005.04.017

Kato, 2005, Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide, Appl. Catal. B: Environ., 57, 109, 10.1016/j.apcatb.2004.10.015

Kachina, 2006, Catalytic TiO2 oxidation of ethanethiol for environmentally benign air pollution control of sulphur compounds, Environ. Chem. Lett., 4, 107, 10.1007/s10311-006-0042-5

Bosc, 2006, Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation, Thin Solid Films, 495, 272, 10.1016/j.tsf.2005.08.361

Irokawa, 2006, Photodegradation of toluene over TiO2–xNx under visible light irradiation, Phys. Chem. Chem. Phys., 8, 1116, 10.1039/b517653k

Wang, 2005, Modeling of the photocatalytic decomposition of gaseous benzene in a TiO2 coated optical fiber photoreactor, J. Appl. Electrochem., 35, 709, 10.1007/s10800-005-5166-y

Vorontsov, 2005, TiO2 photocatalytic oxidation, II: gas-phase processes, Kinetika Katal., 46, 450

Liu, 2006, Low-temperature preparation of nanocrystalline TiO2 photocatalyst with a very large specific surface area, Mater. Chem. Phys., 99, 131, 10.1016/j.matchemphys.2005.10.003

Joung, 2006, Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysis, Chem. Eur., 12, 5526, 10.1002/chem.200501020

Lam, 2007, Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film, Sol. Energy Mater. Sol. Cells, 91, 54, 10.1016/j.solmat.2006.07.004

Rodrigues, 2005, Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant: acetaldehyde, Adv. Mater., 17, 2467, 10.1002/adma.200402064

Ohno, 2006, Photocatalytic TiO2 films deposited by reactive magnetron sputtering with unipolar pulsing and plasma emission control systems, Thin Solid Films, 496, 126, 10.1016/j.tsf.2005.08.252

Song, 2006, Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias, Thin Solid Films, 496, 121, 10.1016/j.tsf.2005.08.249

Pan, 2006, Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties, Chem. Mater., 18, 847, 10.1021/cm0522782

Takahashi, 2006, Sputtering pressure dependent photocatalytic properties of TiO2 thin films, J. Vac. Sci. Technol. A, 24, 1161, 10.1116/1.2187984

Dong, 2006, Finishing of cotton fabrics with aqueous nano-titanium dioxide dispersion and the decomposition of gaseous ammonia by ultraviolet irradiation, J. Appl. Polym. Sci., 99, 286, 10.1002/app.22476

Fu, 2005, Anatase TiO2 nanocomposites for antimicrobial coatings, J. Phys. Chem. B, 109, 8889, 10.1021/jp0502196

Kiwi, 2005, Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy, Langmuir, 21, 4631, 10.1021/la046983l

Banerjee, 2006, Physics and chemistry of photocatalytic titanium oxide: visualization of bactericidal activity using atomic force microscopy, Curr. Sci., 90, 1378

Egerton, 2006, Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2, Phys. Chem. Chem. Phys., 8, 398, 10.1039/B507516E

Nadtochenko, 2006, Laser kinetic spectroscopy of the interfacial transfer between membrane cell walls of E. coli and TiO2, J. Photochem. Photobiol. A: Chem., 181, 401, 10.1016/j.jphotochem.2005.12.028

Cho, 2006, Plasma processing approach to molecular surface tailoring of nanoparticles: improved photocatalytic activity of TiO2, Chem. Mater., 18, 2989, 10.1021/cm060212g

Iliev, 2006, Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution, Appl. Catal. A: Gen., 313, 115, 10.1016/j.apcata.2006.06.039

Sobana, 2006, Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes, J. Mol. Catal. A: Chem., 258, 124, 10.1016/j.molcata.2006.05.013

Rodríguez, 2000, Photo-electrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films, Thin Solid Films, 360, 250, 10.1016/S0040-6090(99)01080-9

Liu, 2006, Photocatalytic efficiency enhancement of plasma-sprayed TiO2 coatings under external bias voltage, Ceram. Int., 32, 719, 10.1016/j.ceramint.2005.05.001

Sánchez, 2006, Preparation of TiO2 coatings on PET monoliths for the photocatalytic elimination of trichloroethylene in the gas phase, Appl. Catal. B: Environ., 66, 295, 10.1016/j.apcatb.2006.03.021

Zhiyong, 2006, Stabilization mechanism of TiO2 on flexible fluorocarbon films as a functional photocatalyst, J. Mol. Catal. A: Chem., 260, 227, 10.1016/j.molcata.2006.07.021

Zhang, 2006, Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces, Langmuir, 22, 9477, 10.1021/la0618869

Okada, 2006, Change in the chemical and electronic properties of TiO2/SnO2:F stacked-layers induced by the photocatalytic reaction, Surf. Sci., 600, 4385, 10.1016/j.susc.2006.02.081

Okinaka, 2006, Latent property of defect-controlled metal-oxide: nonstoichiometric titanium oxides as prospective material for high-temperature thermoelectric conversion, Jpn. J. Appl. Phys., 45, 7009, 10.1143/JJAP.45.7009

Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051

Mwabora, 2004, Composition and morphology of photoelectrochemically active TiO2–xNx thin films deposited by reactive DC magnetron sputtering, J. Phys. Chem. B, 108, 20193, 10.1021/jp0368987

Romualdo Torres, 2004, Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B, 108, 5995, 10.1021/jp037477s

Li, 2005, Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants, Mater. Sci. Eng. B, 117, 67, 10.1016/j.mseb.2004.10.018

In, 2006, Efficient visible light-active n-doped TiO2 photocatalysts by a reproducible and controllable synthetic route, Chem. Commun., 4236, 10.1039/B610316B

Kitano, 2006, Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation, J. Phys. Chem. B, 110, 25266, 10.1021/jp064893e

Koslowski, 2006, Structural, electrical, optical, and photoelectrochemical properties of thin titanium oxinitride films (TiO2–2xNx with 0⩽x⩽1), J. Vac. Sci. Technol. A, 24, 2199, 10.1116/1.2362740

Lindgren, 2003, Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B, 107, 5709, 10.1021/jp027345j

Livraghi, 2006, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, J. Am. Chem. Soc., 128, 15666, 10.1021/ja064164c

Morikawa, 2006, Enhanced photocatalytic activity of TiO2–xNx loaded with copper ions under visible light irradiation, Appl. Catal.: Gen., 314, 123, 10.1016/j.apcata.2006.08.011

Prabakar, 2006, Effect of nitrogen on the photocatalytic activity of TiOxNy thin films, J. Vac. Sci. Technol. A, 24, 1156, 10.1116/1.2174018

Stewart, 2006, Influence of N-doping on the structure and electronic properties of titania nanoparticle photocatalysis, J. Phys. Chem., 110, 16482, 10.1021/jp0624451

Venkatachalam, 2006, Visible light active photocatalytic degradation of bisphenol-A using nitrogen doped TiO2, Nanosci. Nanotechnol., 6, 2499, 10.1166/jnn.2006.531

Wang, 2006, A novel N-doped TiO2 with high visible light photocatalytic activity, J. Mol. Catal. A: Chem., 260, 1, 10.1016/j.molcata.2006.06.044

Yates, 2006, The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition, J. Photochem. Photobiol. A, 179, 213, 10.1016/j.jphotochem.2005.08.018

Yin, 2006, Visible-light-induced photocatalytic activity of TiO2–xNy prepared by solvothermal process in urea–alcohol system, J. Eur. Ceram. Soc., 26, 2735, 10.1016/j.jeurceramsoc.2005.05.012

Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035

Irie, 2006, Hydrophilicity on carbon-doped TiO2 thin films under visible light, Thin Solid Films, 510, 21, 10.1016/j.tsf.2005.08.374

Tian, 2006, DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2, J. Phys. Chem. B, 110, 17866, 10.1021/jp0635462

Cong, 2006, Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity, Chem. Lett., 35, 800, 10.1246/cl.2006.800

Nukumizu, 2003, TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570nm), Chem. Lett., 32, 196, 10.1246/cl.2003.196

Huang, 2006, Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol–gel–solvothermal method, J. Photochem. Photobiol. A: Chem., 184, 282, 10.1016/j.jphotochem.2006.04.041

Celik, 2006, Processing, characterization and photocatalytic properties of Cu doped TiO2 thin films on glass substrate by sol–gel technique, Mater. Sci. Eng. B, 132, 258, 10.1016/j.mseb.2006.03.038

Jing, 2006, Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships, J. Phys. Chem. B, 110, 17860, 10.1021/jp063148z

Smirnova, 2006, Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films, Int. J. Photoenergy, 85469, 1, 10.1155/IJP/2006/85469

Sharma, 2006, Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst, Appl. Catal. A: Gen., 314, 40, 10.1016/j.apcata.2006.07.029

Iwasaki, 2000, Cobalt ion-doped TiO2 photocatalyst response to visible light, J. Colloid Interface Sci., 224, 202, 10.1006/jcis.1999.6694

Rane, 2006, Visible light-sensitive yellow TiO2–xNx and Fe-N co-doped Ti1–yFeyO2–xNx anatase photocatalysts, J. Solid State Chem., 179, 3033, 10.1016/j.jssc.2006.05.033

Gao, 2006, Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide, J. Phys. Chem. B, 110, 14391, 10.1021/jp0624606

Song, 2003, Photoinduced hydrophilicity of epitaxially grown TiO2 films by RF magnetron sputtering, Jpn. J. Appl. Phys., 42, L1529, 10.1143/JJAP.42.L1529

Gu, 2004, Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity, Appl. Phys. Lett., 85, 5067, 10.1063/1.1825052

Karuppuchamy, 2005, Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition, Mater. Chem. Phys., 93, 251, 10.1016/j.matchemphys.2005.04.015

Katsumata, 2005, Effect of microstructure on photoinduced hydrophilicity of transparent anatase thin films, Surf. Sci., 579, 123, 10.1016/j.susc.2005.01.035

Takeuchi, 2005, Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface, J. Phys. Chem. B, 109, 15422, 10.1021/jp058075i

Zhou, 2005, Reversible wettability switch of large area TiO2 films, Chem. Lett., 34, 1298, 10.1246/cl.2005.1298

Heft, 2006, Photocatalytically active thin films on float glass with enhanced hydrophilicity and transmission for photovoltaic applications, Sol. Energy Mater. Sol. Cells, 90, 2846, 10.1016/j.solmat.2006.04.008

Kuo, 2006, Wettability and superhydrophilic TiO2 film formed by chemical vapor deposition, Chem. Lett., 35, 356, 10.1246/cl.2006.356

Langlet, 2006, Photocatalytic activity and photo-induced superhydrophilicity of sol–gel derived TiO2 films, J. Photochem. Photobiol. A: Chem., 181, 203, 10.1016/j.jphotochem.2005.11.026

Mane, 2006, A simple and low temperature process for super-hydrophilic rutile TiO2 thin films growth, Appl. Surf. Sci., 253, 581, 10.1016/j.apsusc.2005.12.123

Miyata, 2006, Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation, Thin Solid Films, 496, 136, 10.1016/j.tsf.2005.08.294

Rico, 2006, Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2, Sol. Energy Mater. Sol. Cells, 90, 2944, 10.1016/j.solmat.2006.05.005

Zhao, 2006, Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition, Curr. Appl. Phys., 6, 931, 10.1016/j.cap.2005.01.042

Nakamura, 2006, Hydrophilic and photocatalytic properties of the SiO2/TiO2 double layers, Thin Solid Films, 496, 131, 10.1016/j.tsf.2005.08.254

Guan, 2005, Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film, Mater. Chem. Phys., 92, 10, 10.1016/j.matchemphys.2004.01.044

Yamashita, 2006, Photo-induced super-hydrophilic property and photocatalysis on transparent Ti-containing mesoporous silica thin films, Catal. Today, 111, 254, 10.1016/j.cattod.2005.10.061

Lin, 2006, Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst, Appl. Surf. Sci., 253, 898, 10.1016/j.apsusc.2006.01.030

Wang, 2006, Controlling wettability and photochromism in a dual-responsive tungsten oxide film, Angew. Chem. Int. Ed., 45, 1264, 10.1002/anie.200502061

Irie, 2004, Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property, Vacuum, 74, 625, 10.1016/j.vacuum.2004.01.036

Hwang, 2005, Photoinduced superhydrophilicity in TiO2 thin films modified with WO3, Bull. Korean Chem. Soc., 26, 1515, 10.5012/bkcs.2005.26.10.1515

Premkumar, 2004, Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light, Chem. Mater., 16, 3980, 10.1021/cm049055g

Heřman, 2006, Magnetron sputtering of TiOxNy films, Vacuum, 81, 285, 10.1016/j.vacuum.2006.04.004

Takeuchi, 2006, Preparation of crystalline TiO2 thin film photocatalysts on polycarbonate substrates by a RF-magnetron sputtering deposition method, Chem. Lett., 35, 904, 10.1246/cl.2006.904

Lee, 2006, Self-cleaning features of plasma-treated surfaces with self-assembled monolayer coating, Jpn. J. Appl. Phys., 45, 912, 10.1143/JJAP.45.912

Yang, 2006, Influence of surface roughness on superhydrophobicity, Phys. Rev. Lett., 97, 116103, 10.1103/PhysRevLett.97.116103

Hong, 2006, Superhydrophobicity of a material made from multiwalled cabon nanotubes, Appl. Phys. Lett., 88, 244101, 10.1063/1.2210449

Wang, 2006, Preparation of hydrophobic coating on glass surface by dielectric barrier discharge using a 16kHz power supply, Appl. Surf. Sci., 252, 8348, 10.1016/j.apsusc.2005.11.042

Hwang, 2006, Hydrophilic/hydrophobic conversion of Ni−doped TiO2 thin films on glass substrates, Ceram. Int., 32, 935−937, 10.1016/j.ceramint.2005.06.010

Zhu, 2006, UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film, Chem. Commun., 2753, 10.1039/b603634a

Fahrenbuch, 1983

1995

Bube, 1998

Deb, 2000, Recent advances in thin film solar cells, vol. 2, 311

Green, 2001, Photovoltaic physics and devices, 291

Green, 2002

Green, 2003

Smestad, 2002, vol. PM115

Goetzberger, 2002, Solar cells: past, present, future, Sol. Energy Mater. Sol. Cells, 74, 1, 10.1016/S0927-0248(02)00042-9

Chopra, 2004, Thin-film solar cells: an overview, Prog. Photovoltaic Res. Appl., 12, 69, 10.1002/pip.541

Jäger-Waldau, 2006, European photovoltaics in world wide comparison, J. Non-Cryst. Solids, 352, 1922, 10.1016/j.jnoncrysol.2005.10.074

Jäger-Waldau, 2007, Photovoltaics and renewable energies in Europe, Renew. Sustain. Energy Rev., 11, 1414, 10.1016/j.rser.2005.11.001

Miles, 2006, Photovoltaic solar cells: choice of materials and production methods, Vacuum, 80, 1090, 10.1016/j.vacuum.2006.01.006

Hu, 1992, Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition, J. Appl. Phys., 71, 880, 10.1063/1.351309

Beneking, 1999, Recent developments of silicon thin film solar cells on glass substrates, Thin Solid Films, 351, 241, 10.1016/S0040-6090(98)01793-3

Kluth, 1999, Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells, Thin Solid Films, 351, 247, 10.1016/S0040-6090(99)00085-1

Müller, 2001, Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells, Thin Solid Films, 392, 327, 10.1016/S0040-6090(01)01052-5

Krč, 2003, Effect of roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells, Thin Solid Films, 426, 296, 10.1016/S0040-6090(03)00006-3

Hüpkes, 2006, Material study on reactively sputtered zinc oxide for thin film silicon solar cells, Thin Solid Films, 502, 286, 10.1016/j.tsf.2005.07.298

F. Ruske, C. Jacobs, V. Sittinger, B. Szyszka, W. Werner, Large-area ZnO:Al films with tailored light scattering properties for photovoltaic applications, to be published.

Minami, 1994, Preparation of milky transparent conducting ZnO films with textured surface by atmospheric chemical vapour deposition using Zn(C5H7O2)2), Thin Solid Films, 253, 14, 10.1016/0040-6090(94)90286-0

Minami, 1995, Low temperature formation of textured ZnO transparent electrodes by magnetron sputtering, J. Vac. Sci. Technol. A, 13, 1053, 10.1116/1.579584

Kluth, 2003, Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour, Thin Solid Films, 442, 80, 10.1016/S0040-6090(03)00949-0

Suzuki, 1999, Micro-textured milky ZnO:Ga thin films fabricated by pusled laser deposition using second-harmonic-generation of Nd:YAG laser, Jpn. J. Appl. Phys., 38, L71, 10.1143/JJAP.38.L71

Goetzberger, 2003, Photovoltaic materials: history, status and outlook, Mater. Sci. Eng. R, 40, 1, 10.1016/S0927-796X(02)00092-X

Fahrner, 2006

Kambe, 2006, TiO2-coated transparent conductive oxide (SnO2:F) films prepared by atmospheric pressure chemical vapor deposition with high durability against atomic hydrogen, Jpn. J. Appl. Phys., 45, L291, 10.1143/JJAP.45.L291

Natsuhara, 2006, TiO2 thin films as protective material for transparent-conducting oxides used in Si thin film solar cells, Sol. Energy Mater. Sol. Cells, 90, 2867, 10.1016/j.solmat.2006.05.001

Chu, 1995, Thin film II–VI photovoltaics, Solid-State Electron., 38, 533, 10.1016/0038-1101(94)00203-R

Meyers, 2000, Technical and economic opportunities for CdTe PV at the turn of the millennium, Prog. Photovoltaic Res. Appl., 8, 161, 10.1002/(SICI)1099-159X(200001/02)8:1<161::AID-PIP307>3.0.CO;2-A

Romeo, 2004, Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells, Prog. Photovoltaic Res. Appl., 12, 93, 10.1002/pip.527

Contreras, 1999, Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells, Prog. Photovoltaic Res. Appl., 7, 311, 10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G

Stanbery, 2002, Copper indium selenides and related materials for photovoltaic devices, Crit. Rev. Solid State Mater. Sci., 27, 73, 10.1080/20014091104215

Todorov, 2006, CuInS2 films for photovoltaic applications deposited by a low-cost method, Chem. Mater., 18, 3145, 10.1021/cm0606631

Brabec, 2001, Plastic solar cells, Adv. Funct. Mater., 11, 15, 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

Nelson, 2002, Organic photovoltaic films, Curr. Opin. Solid State Mater. Sci., 6, 87, 10.1016/S1359-0286(02)00006-2

Nunzi, 2002, Organic photovoltaic materials and devices, C. R. Phys., 3, 523, 10.1016/S1631-0705(02)01335-X

Coutts, 1999, A review of progress in thermophotovoltaic generation of electricity, Renew. Sustain. Energy Rev., 3, 77, 10.1016/S1364-0321(98)00021-5

Coutts, 2001, An overview of thermophotovoltaic generation of electricity, Sol. Energy Mater. Sol. Cells, 66, 443, 10.1016/S0927-0248(00)00206-3

Yugam, 2003, Thermophotovoltaic systems for civilian and industrial applications in Japan, Semicond. Sci. Technol., 18, S239, 10.1088/0268-1242/18/5/315

Zhao, 2006, Enhanced hardness in B-doped ZnO thin films on fused quartz substrates by pulsed-lased deposition, Appl. Surf. Sci., 253, 726, 10.1016/j.apsusc.2006.01.010

Du Pasquier, 2005, Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells, Appl. Phys. Lett., 87, 203511, 10.1063/1.2132065

Ulbricht, 2006, Polymeric solar cells with oriented and strong transparent carbon nanotube anode, Phys. Stat. Sol. B, 243, 3528, 10.1002/pssb.200669181

Ulbricht, 2007, Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells, Sol. Energy Mater. Sol. Cells, 91, 416, 10.1016/j.solmat.2006.10.002

Rowell, 2006, Organic solar cells with carbon nanotube network electrodes, Appl. Phys. Lett., 88, 233506, 10.1063/1.2209887

van de Lagemaat, 2006, Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode, Appl. Phys. Lett., 88, 233503, 10.1063/1.2210081

Hagfeldt, 1995, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95, 49, 10.1021/cr00033a003

Hagfeldt, 2000, Molecular photovoltaics, Acc. Chem. Res., 33, 269, 10.1021/ar980112j

Zaban, 2002, Dye-sensitized solar cells: principles and operation, 209

Grätzel, 2003, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev., 4, 145, 10.1016/S1389-5567(03)00026-1

Li, 2006, Review of recent progress in solid-state dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 90, 549, 10.1016/j.solmat.2005.04.039

Gómez, 2000, High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films, Sol. Energy Mater. Sol. Cells, 64, 385, 10.1016/S0927-0248(00)00231-2

Gómez, 2000, Dye-sensitized nanocrystalline Ti-oxide-based solar cells prepared by sputtering: influence of the substrate temperature during deposition, J. Phys. Chem. B, 104, 8712, 10.1021/jp001566c

Gómez, 2003, Dye-sensitized sputtered titanium oxide films for photovoltaic applications: influence of the O2/Ar gas flow ratio during the deposition, Sol. Energy Mater. Sol. Cells, 76, 37, 10.1016/S0927-0248(02)00215-5

Tributsch, 2004, Dye sensitization solar cells: a critical assessment of the learning curve, Coord. Chem. Rev., 248, 1511, 10.1016/j.ccr.2004.05.030

Chiba, 2006, Dye-sensitized solar cells with conversion eficiency of 11.1%, Jpn. J. Appl. Phys., 45, L638, 10.1143/JJAP.45.L638

Ito, 2006, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline TiO2 photoanode, Chem. Commun., 4004, 10.1039/B608279C

Hino, 2006, Dye-sensitized solar cell with single-walled carbon nanotube thin film prepared by an electrolytic micelle disruption method as the counterelectrode, Fullerenes Nanotubes Carbon Nanostruct., 14, 607, 10.1080/15363830600812183

Tonooka, 2003, Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors, Thin Solid Films, 445, 327, 10.1016/S0040-6090(03)01177-5

Mwamburi, 2000, Doped tin oxide coated aluminium solar selective reflector surfaces, Sol. Energy, 68, 371, 10.1016/S0038-092X(00)00030-X

Mwamburi, 2000, Preparation and characterization of solar selective SnOx:F coated aluminium reflector surfaces, Thin Solid Films, 374, 1, 10.1016/S0040-6090(00)01045-2

Mwamburi, 2002, Polarization-dependent angular-optical reflectance in solar-selective SnOx/Al2O3/Al reflector surfaces, Appl. Opt., 41, 2428, 10.1364/AO.41.002428

Vigil, 2005, Transparent conducting oxides as selective filters in thermophotovoltaic devices, J. Phys.: Condens. Matter, 17, 6377, 10.1088/0953-8984/17/41/008

Morrison, 2001, Solar collectors, 145

Morrison, 2001, Solar water heating, 223

Schüler, 2005, Potential of quarterwave interference stacks for colored thermal solar collectors, Sol. Energy, 79, 122, 10.1016/j.solener.2004.12.008

Schüler, 2006, Sol–gel deposition and optical characterization of multilayered SiO2/Ti1–xSixO2 coatings on solar collector glasses, Sol. Energy Mater. Sol. Cells, 90, 2894, 10.1016/j.solmat.2006.05.003

Tripanagnostopoulos, 2000, Solar collectors with colored absorbers, Sol. Energy, 68, 343, 10.1016/S0038-092X(00)00031-1

Kalogirou, 2005, Performance of solar systems employing collectors with colored absorber, Energy Build., 37, 824, 10.1016/j.enbuild.2004.10.011

Crnjak Orel, 2005, Spectrally selective solar absorbers in different non-black colours, Sol. Energy Mater. Sol. Cells, 85, 41, 10.1016/j.solmat.2004.04.010

M.M. Koltun, Selektivnye Opticheskie Poverkhnosti Preobrazovatelei Solnechnoi Energii (Izdatel'stvo Nauka, Moscow, Soviet Union, 1979). [English translation Selective Optical Surfaces for Solar Energy Converters (Allerton, New York, USA, 1981)].

Seraphin, 1979, Spectrally selective surfaces and their impact on photothermal solar energy conversion, vol. 31, 5

Agnihotri, 1981

Niklasson, 1983, Surfaces for selective absorption of solar energy: an annotated bibliography 1955–81, J. Mater. Sci., 18, 3475, 10.1007/BF00540724

Niklasson, 1991, Selectively solar-absorbing surface coatings: optical properties and degradation, 70

Buhrman, 1986, Physics of solar selective surfaces, vol. 3, 207

Wäckelgård, 2001, Selectively solar-absorbing coatings, 109

Haitjema, 1987, The physical properties of fluorine-doped tin dioxide films and the influence of ageing and impurity effects, Sol. Energy Mater., 16, 79, 10.1016/0165-1633(87)90010-4

Borsa, 2006, Mg–Ti–H thin films for smart solar collectors, Appl. Phys. Lett., 88, 241910, 10.1063/1.2212287

Mbise, 1989, Angular selective window coatings: theory and experiment, Proc. Soc. Photo-Opt. Eng., 1149, 179

Kuwahara, 1988, Resistivity anisotropy of nickel films induced by oblique incidence sputter deposition, Thin Solid Films, 164, 165, 10.1016/0040-6090(88)90128-9

Otiti, 1997, Anisotropic optical, magnetic, and electrical properties of obliquely evporated Ni films, Thin Solid Films, 307, 245, 10.1016/S0040-6090(97)00257-5

Otiti, 2001, Optical and electrical anisotropy in obliquely evaporated Fe films, J. Mater. Sci. Lett., 20, 845, 10.1023/A:1010966830713

van Kranenburg, 1994, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data, Mater. Sci. Eng. R, 11, 295, 10.1016/0927-796X(94)90021-3

McVitie, 1999, The effect of oblique incidence evaporation on the magnetic properties of thin film elements, J. Phys. D: Appl. Phys., 32, 2714, 10.1088/0022-3727/32/21/302

Lisfi, 2002, Microstructural and magnetic properties of metallic thin films obliquely sputtered on polymer, J. Magn. Magn. Mater., 242–245, 370, 10.1016/S0304-8853(01)01162-3

Nguyen, 2002, The effects of metallic underlayers on magnetic properties of obliquely sputtered Co thin films, J. Magn. Magn. Mater., 242–245, 374, 10.1016/S0304-8853(01)01163-5

Lisfi, 2004, Investigation of magnetic anisotropy and role of underlayer in obliquely sputtered metallic island films, J. Magn. Magn. Mater., 272–276, e797, 10.1016/j.jmmm.2003.12.1251

Nguyen, 2004, Properties of obliquely sputtered Co on different underlayers on polymer substrate, J. Magn. Magn. Mater., 272–276, 2171, 10.1016/j.jmmm.2003.12.524

Otiti, 2004, Anisotropic magnetic properties of obliquely deposited Ni films, J. Mater. Sci., 39, 477, 10.1023/B:JMSC.0000011501.36257.cd

Otiti, 2003, Magneto-optical properties of obliquely evaporated Ni films, J. Mater. Sci., 38, 1315, 10.1023/A:1022859231736

Bijker, 1998, Oblique metal deposited thin films for magnetic recording, Tribol. Int., 31, 553, 10.1016/S0301-679X(98)00075-9

Wang, 2003, Approaches to tilted recording for extremely high areal density, IEEE Trans. Magn., 39, 1930, 10.1109/TMAG.2003.813775

Zou, 2003, Tilted media in a perpendicular recording system for high areal density recording, Appl. Phys. Lett., 82, 2473, 10.1063/1.1565503

Nieuwenhuizen, 1966, Microfractography of thin films, Philips Tech. Rev., 27, 87

Dirks, 1977, Columnar microstructures in vapor-deposited thin films, Thin Solid Films, 47, 219, 10.1016/0040-6090(77)90037-2

Leamy, 1980, The microstructure of vapor deposited thin films, vol. 6, 309

Fujiwara, 1988, Comment on the tangent rule, Thin Solid Films, 163, 387, 10.1016/0040-6090(88)90453-1

Lichter, 1986, Model for columnar microstructure of thin solid films, Phys. Rev. Lett., 56, 1396, 10.1103/PhysRevLett.56.1396

Hara, 1994, Alignment of crystallites in obliquely deposited cobalt films, Jpn. J. Appl. Phys., 33, 3448, 10.1143/JJAP.33.3448

Okamoto, 2005, Incidence angle dependences of columnar grain structure and texture in obliquely deposited iron films, Jpn. J. Appl. Phys., 44, 1382, 10.1143/JJAP.44.1382

Robbie, 1995, First thin film realization of a helicoidal bianisotropic medium, J. Vac. Sci. Technol. A, 13, 2991, 10.1116/1.579626

Robbie, 1995, Fabrication of thin films with highly porous microstructures, J. Vac. Sci. Technol. A, 13, 1032, 10.1116/1.579579

Robbie, 1996, Chiral sculptured thin films, Nature, 384, 616, 10.1038/384616a0

Robbie, 1998, Advanced techniques for glancing angle deposition, J. Vac. Sci. Technol. B, 16, 1115, 10.1116/1.590019

Robbie, 1997, Sculptured thin films and glancing angle deposition: growth mechanics and applications, J. Vac. Sci. Technol. A, 15, 1460, 10.1116/1.580562

Hodgkinson, 1998, Incremental-growth model for the deposition of spatially modulated thin film nanostructures, J. Vac. Sci. Technol. B, 16, 2811, 10.1116/1.590276

Rovira, 1998, Rotating-compensator multichannel transmission ellipsometry of a thin-film helicoidal bianisotropic medium, Thin Solid Films, 313–314, 373, 10.1016/S0040-6090(97)00849-3

Malac, 1999, Fabrication of submicrometer regular arrays of pillars and helices, J. Vac. Sci. Technol. B, 17, 2671, 10.1116/1.591046

Malac, 2001, Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition, J. Vac. Sci. Technol. A, 19, 158, 10.1116/1.1326940

Seto, 1999, Mechanical response of thin films with helical microstructures, J. Vac. Sci. Technol. B, 17, 2172, 10.1116/1.590887

Seto, 2001, Microsprings and microcantilevers: studies of mechanical response, J. Micromech. Microeng., 11, 582, 10.1088/0960-1317/11/5/322

Sit, 1999, Thin film microstructure control using glancing angle deposition by sputtering, J. Mater. Res., 14, 1197, 10.1557/JMR.1999.0162

Sit, 2000, Liquid crystal alignment and switching in porous chiral thin films, Adv. Mater., 12, 371, 10.1002/(SICI)1521-4095(200003)12:5<371::AID-ADMA371>3.0.CO;2-P

Vick, 1999, Self-shadowing and surface diffusion effects in obliquely-deposited thin films, Thin Solid Films, 339, 88, 10.1016/S0040-6090(98)01154-7

Vick, 1999, Production of porous carbon thin films by pulsed laser deposition, Thin Solid Films, 350, 49, 10.1016/S0040-6090(99)00274-6

Vick, 2002, Growth behavior of evaporated porous thin films, J. Mater. Res., 17, 2904, 10.1557/JMR.2002.0421

Vick, 2002, Porous thin films for the characterization of atomic force microscope tip morphology, Thin Solid Films, 408, 79, 10.1016/S0040-6090(02)00142-6

Messier, 2000, Origin and evolution of sculptured thin films, J. Vac. Sci. Technol. A, 18, 1538, 10.1116/1.582381

Dick, 2000, Periodic magnetic microstructure by glancing angle deposition, J. Vac. Sci. Technol. A, 18, 1838, 10.1116/1.582481

Dick, 2001, Periodic submicrometer structures by sputtering, J. Vac. Sci. Technol. B, 19, 1813, 10.1116/1.1396644

Dick, 2003, Investigation of substrate rotation at glancing angle incidence on thin-film morphology, J. Vac. Sci. Technol. B, 21, 2569, 10.1116/1.1627334

Harris, 2001, Porous thin films for thermal barrier coatings, Surf. Coatings Technol., 138, 185, 10.1016/S0257-8972(00)01155-5

Harris, 2001, Fabrication of perforated thin films with helical and chevron pore shapes, Electrochem. Solid-State Lett., 4, C39, 10.1149/1.1371255

Harris, 2002, Fabrication and optical characterization of template-constructed thin films with chiral nanostructure, IEEE Trans. Nanotechnol., 1, 122, 10.1109/TNANO.2002.805117

Harris, 2002, Column angle variation in porous chevron thin films, J. Vac. Sci. Technol. A, 20, 2062, 10.1116/1.1517258

Hodgkinson, 2001, Inorganic chiral optical materials, Adv. Mater., 13, 889, 10.1002/1521-4095(200107)13:12/13<889::AID-ADMA889>3.0.CO;2-K

Smy, 2001, Thin film microstructure and thermal transport simulation using 3D-films, Thin Solid Films, 391, 88, 10.1016/S0040-6090(01)00974-9

Suzuki, 2001, Numerical study of the effective surface area of obliquely deposited thin films, J. Appl. Phys., 90, 5599, 10.1063/1.1415534

Suzuki, 2001, Integrated sculptured thin films, Jpn. J. Appl. Phys., 40, L358, 10.1143/JJAP.40.L358

Kennedy, 2002, Fabrication of tetragonal square spiral photonic crystals, NanoLetters, 2, 59, 10.1021/nl015635q

Elias, 2004, Fabrication of helically perforated gold, nickel, and polystyrene thin films, J. Mictroelectromech. Syst., 13, 808, 10.1109/JMEMS.2004.835760

Elias, 2005, Large-area microfabrication of three-dimensional, helical polymer structures, J. Micromech. Microeng., 15, 49, 10.1088/0960-1317/15/1/008

Karabacak, 2003, Quasi-periodic nanostructures grown by oblique angle deposition, J. Appl. Phys., 94, 7723, 10.1063/1.1621717

Karabacak, 2003, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition, J. Vac. Sci. Technol. A, 22, 1778, 10.1116/1.1743178

Kennedy, 2004, Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition, J. Vac. Sci. Technol. B, 22, 1184, 10.1116/1.1752903

Robbie, 2004, Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure, Rev. Sci. Instrum., 75, 1089, 10.1063/1.1667254

van Popta, 2004, Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition, Opt. Lett., 29, 2545, 10.1364/OL.29.002545

van Popta, 2004, Optical properties of porous helical thin films, Appl. Opt., 43, 3632, 10.1364/AO.43.003632

Jensen, 2005, Porosity engineering in glancing angle deposition thin films, Appl. Phys. A, 80, 763, 10.1007/s00339-004-2878-5

Jensen, 2005, Embedded air and solid defects in periodically structured porous thin films, Nanotechnology, 16, 2639, 10.1088/0957-4484/16/11/028

Jensen, 2005, Square spiral 3D photonic bandgap crystals at telecommunications frequencies, Opt. Express, 13, 3348, 10.1364/OPEX.13.003348

Lakhtakia, 2005

Tsoi, 2006, Surface functionalization of porous nanostructured metal oxide thin films fabricated by glancing angle deposition, Chem. Mater., 18, 5260, 10.1021/cm061709t

Vick, 2006, Conduction anisotropy in porous thin films with chevron microstructures, J. Vac. Sci. Technol. A, 24, 156, 10.1116/1.2148413

Woo, 2006, Optical anisotropy of microstructure-controlled TiO2 films fabricated by glancing-angle deposition (GLAD), J. Korean Phys. Soc., 48, 1199

Yang, 2005, Porosity control in zig-zag vapor-deposited films, Thin Solid Films, 471, 1, 10.1016/j.tsf.2004.02.034

Brett, 1989, Simulation of structural transitions in thin films, J. Mater. Sci., 24, 623, 10.1007/BF01107452

Sikkens, 1984, Computer simulation of thin film growth: applying the results to optical coatings, Proc. Soc. Photo-Opt. Instrum. Eng., 505, 236

Müller, 1985, Dependence of thin-film microstructure on deposition rate by means of a computer simulation, J. Appl. Phys., 58, 2573, 10.1063/1.335885

Srolovitz, 1988, Analytical and numerical modelling of columnar evolution in thin films, J. Vac. Sci. Technol. A, 6, 2371, 10.1116/1.575558

Krug, 1991, Columnar growth in oblique incidence ballistic deposition: faceting, noise reduction, and mean-field theory, Phys. Rev. A, 43, 900, 10.1103/PhysRevA.43.900

Paik, 1991, Surface kinetics and roughness formation in thin films, Phys. Rev. B, 43, 1843, 10.1103/PhysRevB.43.1843

Müller-Pfeiffer, 1992, A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co–Cr, Thin Solid Films, 213, 143, 10.1016/0040-6090(92)90489-X

Rooney, 1993, Kinetic simulation of vapor deposition and growth, Phys. Rev. B, 48, 3079, 10.1103/PhysRevB.48.3079

Müller, 1986, Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes, J. Vac. Sci. Technol. A, 4, 184, 10.1116/1.573468

Müller, 1986, Model for ion-assisted thin-film densification, J. Appl. Phys., 59, 2803, 10.1063/1.336960

Tait, 1993, Modelling and characterization of columnar growth in evaporated films, Thin Solid Films, 226, 196, 10.1016/0040-6090(93)90378-3

Meakin, 1989, Ballistic deposition with non-uniform deposition densities: singular density distributions, J. Phys. A: Math. Gen., 22, L123, 10.1088/0305-4470/22/4/003

Brett, 1992, Nodular defect growth in thin films, J. Mater. Sci. Mater. Electron., 3, 64, 10.1007/BF00701096

Westra, 1989, Simulation by ballistic deposition of local density variation and step coverage for via metallization, IEEE Trans. Electron. Device Lett., 10, 198, 10.1109/55.31719

Smy, 1990, Simulation of density variation and step coverage for a variety of via/contact geometries using SIMBAD, IEEE Trans. Electron Devices, 37, 591, 10.1109/16.47762

Tait, 1990, Simulation and measurement of density variation in Mo films sputter deposited over oxide steps, J. Vac. Sci. Technol. A, 8, 1593, 10.1116/1.576771

Tait, 1990, A ballistic deposition model for films evaporated over topography, Thin Solid Films, 187, 375, 10.1016/0040-6090(90)90058-L

Tait, 1991, Density variation of tungsten films sputtered over topography, J. Appl. Phys., 70, 4295, 10.1063/1.349107

Harris, 2000, Microchannel surface area enhancement using porous thin films, J. Electrochem. Soc., 147, 2002, 10.1149/1.1393475

Ling, 1988, Development and evolution of thin film microstructures: a Monte Carlo approach, J. Electron. Mater., 17, 459, 10.1007/BF02652133

Guenther, 1989, Microstructure analysis of thin films deposited by reactive evaporation and by reactive ion plating, J. Vac. Sci. Technol. A, 7, 1436, 10.1116/1.576299

Müller, 1987, Role of incident kinetic energy of adatoms in thin film growth, Surf. Sci., 184, L375, 10.1016/S0039-6028(87)80265-0

Müller, 1987, Ion-beam-induced epitaxial vapor-phase growth: a molecular-dynamics study, Phys. Rev. B, 35, 7906, 10.1103/PhysRevB.35.7906

Brett, 1988, Structural transitions in ballistic aggegation simulation of thin-film growth, J. Vac. Sci. Technol. A, 6, 1749, 10.1116/1.575285

Müller, 1987, Cluster-beam deposition of thin films: a molecular dynamics simulation, J. Appl. Phys., 61, 2516, 10.1063/1.337926

Smy, 1991, Ballistic deposition simulation via metallization using a quasi-three-dimensional model, IEEE Trans. Computer-Aided Design, 10, 130, 10.1109/43.62798

Smy, 2000, Three-dimensional simulation of film microstructure produced by glancing angle deposition, J. Vac. Sci. Technol. A, 18, 2507, 10.1116/1.1286394

Meakin, 1992, Three-dimensional ballistic deposition at oblique incidence, Phys. Rev. A, 46, 3390, 10.1103/PhysRevA.46.3390

Dalla Torre, 2003, Microstructure of thin tantalum films sputtered onto inclined substrates: experiments and atomistic simulations, J. Appl. Phys., 94, 263, 10.1063/1.1579112

Anderson, 1989, Computer simulation of normal grain growth in three dimensions, Philos. Mag. B, 59, 293, 10.1080/13642818908220181

Krug, 1989, Microstructure and surface scaling in ballistic deposition at oblique incidence, Phys. Rev. A, 40, 2064, 10.1103/PhysRevA.40.2064

Meakin, 1992, Scaling structure in simple screening models for columnar growth, Phys. Rev. A, 46, 4654, 10.1103/PhysRevA.46.4654

Paritosh, 2002, Shadowing effects on the microstructure of obliquely deposited films, J. Appl. Phys., 91, 1963, 10.1063/1.1432125

Abelmann, 1997, Oblique evaporation and surface diffusion, Thin Solid Films, 305, 1, 10.1016/S0040-6090(97)00095-3

Suzuki, 2006, Vapor phase growth of Al whiskers induced by glancing angle deposition at high temperature, Appl. Phys. Lett., 89, 133103, 10.1063/1.2357582

Schubert, 2006, Recrystallization behavior in chiral sculptured thin films from silicon, J. Appl. Phys., 100, 016107, 10.1063/1.2207728

Cohen, 1973, Optical properties of granular silver and gold films, Phys. Rev. B, 8, 3689, 10.1103/PhysRevB.8.3689

Granqvist, 1978, Optical properties of Ag–SiO2 cermet films: a comparison of effective medium theories, Phys. Rev. B, 18, 2897, 10.1103/PhysRevB.18.2897

Lamarre, 2005, Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation, Thin Solid Films, 479, 232, 10.1016/j.tsf.2004.11.180

J.-M. Lamarre, F. Billard, C. Harkati Kerboua, M. Lequime, S. Roorda, L. Martinu, Anisotropic nonlinear optical absorption in gold/silica nanocomposites, to be published.

Ng, 1995, Spectral switching of the preferred transmission direction in absorbing anisotropic composites, J. Phys. D: Appl. Phys., 28, 2578, 10.1088/0022-3727/28/12/028

Mbise, 1997, Angular selective window coatings: theory and experiments, J. Phys. D: Appl. Phys., 30, 2103, 10.1088/0022-3727/30/15/001

Smith, 1998, Thin film angular selective glazing, Sol. Energy, 62, 229, 10.1016/S0038-092X(98)00009-7

Smith, 1998, Angular selective thin film glazing, Renew. Energy, 15, 183, 10.1016/S0960-1481(98)00151-7

Gotoh, 1990, Structures and properties of chromium thin films prepared by anisotropic-emission-effect sputter deposition, J. Appl. Phys., 67, 1030, 10.1063/1.345786

Mbise, 1995, Obliquely evaporated Cr films with large angular selectivity, J. Appl. Phys., 77, 2816, 10.1063/1.358690

Mbise, 1996, Angular-selective optical transmittance through obliquely evaporated Cr films: experiments and theory, J. Appl. Phys., 80, 5361, 10.1063/1.363476

Palmer, 1996, Angular selective properties of thin films: measurement of polar and azimuthal transmittance, Sol. Energy Mater. Sol. Cells, 44, 397, 10.1016/S0927-0248(95)00176-X

Lintymer, 2003, Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films, Surf. Coatings Technol., 174–175, 316, 10.1016/S0257-8972(03)00413-4

Le Bellac, 1995, Angular-selective optical transmittance of anisotropic inhomogeneous Cr-based films made by sputtering, J. Appl. Phys., 77, 6145, 10.1063/1.359140

Le Bellac, 1995, Angular-selective optical transmittance of highly transparent Al-oxide-based films made by oblique-angle sputtering, J. Appl. Phys., 78, 2894, 10.1063/1.360034

Le Bellac, 1995, Angular selectivity of the infrared transmittance through obliquely sputter-deposited Ti-oxide-based films, Thin Solid Films, 266, 94, 10.1016/0040-6090(95)06813-9

Mbise, 1989, Angular-selective optical properties of Cr films made by oblique-angle evaporation, Appl. Phys. Lett., 54, 987, 10.1063/1.100757

Smith, 1990, Optimum materials choice for angular selective window coatings, vol. 3, 1406

Smith, 1992, Cermets for angular selective transmittance, Sol. Energy Mater. Sol. Cells, 25, 149, 10.1016/0927-0248(92)90024-J

Ditchburn, 1991, Useful angular selectivity in oblique columnar aluminum, J. Appl. Phys., 69, 3769, 10.1063/1.348474

Campagno, 2002

Lampert, 2004, Chromogenic smart materials, Mater. Today, 7, 28, 10.1016/S1369-7021(04)00123-3

Hoffman, 1990, Photochromic glass, vol. IS4, 86

Chu, 1990, Photochromic plastics, vol. IS4, 102

Minkin, 2004, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds, Chem. Rev., 104, 2751, 10.1021/cr020088u

Ahmed, 2006, Photochromism of dihydroindolizines, part VI: synthesis and photochromic behavior of a novel type of IR-absorbing photochromic compounds based on highly conjugated dihydroindolizines, J. Phys. Org. Chem., 19, 402, 10.1002/poc.1098

Ohko, 2003, Multicolour photochromism in TiO2 films loaded with silver nanoparticles, Nat. Mater., 2, 29, 10.1038/nmat796

Naoi, 2004, TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior, J. Am. Chem. Soc., 126, 3664, 10.1021/ja039474z

Naoi, 2005, Switchable rewritability of Ag–TiO2 nanocomposite film with multicolor photochromism, Chem. Commun., 1288, 10.1039/B416139D

Kelly, 2006, Nanostructure of silver metal produced photocatalytically in TiO2 and the mechanism of the resulting photochromic behavior, J. Phys. Chem. B, 110, 7743, 10.1021/jp0550917

He, 2003, Photochromism of molybdenum oxide, J. Photochem. Photobiol. C: Photochem. Rev., 4, 125, 10.1016/S1389-5567(03)00025-X

He, 2003, Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol, Chem. Mater., 15, 4039, 10.1021/cm034116g

Scarminio, 2003, Stress in photochromic and electrochromic effects on tungsten oxide film, Sol. Energy Mater. Sol. Cells, 79, 357, 10.1016/S0927-0248(02)00472-5

Blackman, 2005, Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3–x thin film from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties, Chem. Mater., 17, 1583, 10.1021/cm0403816

Lai, 2005, Effect of copolymer and additive concentration on the behaviors of mesoporous tungsten oxide, J. Alloys Compds., 396, 295, 10.1016/j.jallcom.2005.01.004

Avellaneda, 2003, Photochromic properties of WO3 and WO3:X (X=Ti, Nb, Ta and Zr) thin films, Solid State Ionics, 165, 117, 10.1016/j.ssi.2003.08.023

Xie, 2003, A WO3/ZnO nanoparticle composite system with high photochromic performance, Chem. J. Chinese Univ., 24, 2086

Poirier, 2006, Bulk photochromism in a tungstate-phosphate glass: a new optical memory material, J. Chem. Phys., 125, 161101, 10.1063/1.2364476

Sone, 1987, vol. 10

Day, 1990, Science and technology of thermochromic materials, vol. IS4, 122

Goodenough, 1971, Metallic oxides, vol. 5, 145

Jorgenson, 1990, Thermochromic materials and devices: inorganic systems, vol. IS4, 86

Wilson, 1993, Transmission variation using scattering/transparent switching films, Sol. Energy Mater. Sol. Cells, 31, 197, 10.1016/0927-0248(93)90051-4

Eck, 1995, Semi-interpentrating polymer networks with temperature-dependent light transmission—a new smart material for solar technology, Adv. Mater., 7, 800, 10.1002/adma.19950070909

Watanabe, 1998, Intelligent window using a hydrogel layer for energy efficiency, Sol. Energy Mater. Sol. Cells, 54, 203, 10.1016/S0927-0248(98)00072-5

Seeboth, 2000, Materials for intelligent sun protection glazing, Sol. Energy Mater. Sol. Cells, 60, 263, 10.1016/S0927-0248(99)00087-2

Andersson, 1987, Temperature-dependent transmittance of luminous and solar radiation for quartz fibers immersed in carbon tetrachloride, Appl. Opt., 26, 2164, 10.1364/AO.26.002164

Granqvist, 1995

Granqvist, 2000, Electrochromic tungsten oxide films: review of progress 1993–1998, Sol. Energy Mater. Sol. Cells, 60, 201, 10.1016/S0927-0248(99)00088-4

Monk, 1995

Granqvist, 2003, Advances in electrochromic materials and devices: survey of some recent advances, Thin Solid Films, 442, 201, 10.1016/S0040-6090(03)00983-0

Bamfield, 2001

Bessière, 2004, Study and optimization of a flexible electrochromic device based on polyaniline, Electrochim. Acta, 49, 2051, 10.1016/j.electacta.2003.12.034

Huang, 2006, Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid), Electrochim. Acta, 51, 5858, 10.1016/j.electacta.2006.03.031

Kim, 2006, Layer-by-layer assembled electrochromic film based on an alkylsulfonated polyaniline, Mol. Cryst. Liq. Cryst., 447, 173, 10.1080/15421400500387361

Yang, 2006, Molecular assembly engineering of self-doped polyaniline film for application in electrochromic devices, Electrochem. Solid-State Lett., 9, C5, 10.1149/1.2131242

Ribeiro, 2006, Electrochromism of dinitrobenzoyl-derivatised polypyrrole films deposited on ITO/glass electrodes, Electrochim. Acta, 51, 4892, 10.1016/j.electacta.2006.01.028

Ak, 2006, Electrochemical properties of a new star-shaped pyrrole monomer and its electrochromic applications, Macromol. Chem. Phys., 207, 1351, 10.1002/macp.200600178

Benito, 2004, Characterization of novel all-plastic electrochromic devices: electro-optic and voltammetric response, Opt. Eng., 43, 2967, 10.1117/1.1815333

Ko, 2005, Multicolored electrochromism of a poly{1,4-bis[2-(3,4-ethylenedioxy)thienyl]benzene} derivative bearing viologen functional groups, Adv. Funct. Mater., 15, 905, 10.1002/adfm.200400556

Ryu, 2005, Preparation of a reflective-type electrochromic device based on monodisperse micrometer-size-range polymeric microspheres and viologen pendants, J. Polym. Sci. A: Polym. Chem., 43, 6562, 10.1002/pola.21131

Sortino, 2006, Self-assembling and electrochromic films of bipyridinium building blocks, J. Mater. Chem., 16, 3171, 10.1039/b608356k

Mecerreyes, 2004, A simplified all-polymer flexible electrochromic device, Electrochim. Acta, 49, 3555, 10.1016/j.electacta.2004.03.032

Vergaz Benito, 2004, Characterization of novel all-plastic electrochromic devices: electro-optic and voltammetric response, Opt. Eng., 43, 2967, 10.1117/1.1815333

Cutler, 2005, Alkoxysulfonate-functionalized PEDOT polyelectrolyte multilayer films: electrochromic and hole transport materials, Macromolecules, 38, 3068, 10.1021/ma047396+

Marcilla, 2006, Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices, Electrochem. Commun., 8, 482, 10.1016/j.elecom.2006.01.013

Sindhu, 2006, Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates, Mater. Sci. Eng. B, 132, 39, 10.1016/j.mseb.2006.02.030

Tung, 2006, Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4-ethylenedioxythiophene) and Prussian blue, Sol. Energy Mater. Sol. Cells, 90, 521, 10.1016/j.solmat.2005.02.018

Admassie, 2004, Electrochromism in diffractive conducting polymer gratings, J. Electrochem. Soc., 151, H153, 10.1149/1.1738676

Lin, 2006, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene), Sol. Energy Mater. Sol. Cells, 90, 506, 10.1016/j.solmat.2005.02.017

Manisankar, 2005, Electrochemical and electrochromic behavior of novel poly(aniline-co-4,4′-diaminodiphenyl sulfone), Chem. Mater., 17, 1722, 10.1021/cm0483700

Huang, 2006, An all-thiophene electrochromic device fabricated with poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene), Sol. Energy Mater. Sol. Cells, 90, 491, 10.1016/j.solmat.2005.02.016

Sonmez, 2005, PEDOT/PAMPS: an electrically conductive polymer composite with electrochromic and cation exchange properties, Synth. Met., 155, 130, 10.1016/j.synthmet.2005.07.335

Manisankar, 2006, Electrochemical synthesis and characterization of novel electrochromic poly(3,4-ethylenedioxythiophene-co-diclofenac) with surfactants, Electrochim. Acta, 51, 2964, 10.1016/j.electacta.2005.08.031

Liou, 2005, Synthesis, luminescence and electrochromism of aromatic poly(amine-amide)s with pendent triphenylamine moities, J. Mater. Chem., 15, 1812, 10.1039/b419183h

Liou, 2006, New soluble triphenylamine-based amorphous aromatic polymides for high performance blue-emitting hole-transporting and anodically electrochromic materials, Polymer, 47, 7013, 10.1016/j.polymer.2006.07.070

Su, 2005, Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties, J. Polym. Sci. A: Polym. Chem., 43, 2085, 10.1002/pola.20666

Choi, 2006, High contrast ratio and rapid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly, Chem. Mater., 18, 5823, 10.1021/cm061484m

Camurlu, 2005, Conducting polymers of octanoic acid 2-thiophen-3-yl-ethyl ester and their electrochromic properties, Mater. Chem. Phys., 92, 413, 10.1016/j.matchemphys.2005.01.040

Kim, 2005, Layer-by-layer assembled electrochromic films for all-solid-state electrochromic devices, Chem. Mater., 17, 6381, 10.1021/cm051492n

Erden, 2006, Synthesis, characterization and electrochromic properties of copolymer of 3-{[4-(thien-3-yl-methoxyphenoxy)phenoxy]methyl} thiophene with thiophene, Eur. Polym. J., 42, 1866, 10.1016/j.eurpolymj.2006.03.011

Lim, 2006, Single- and dual-type electrochromic devices based on polycarbazole derivative bearing pendent viologen, Synth. Met., 156, 695, 10.1016/j.synthmet.2006.03.008

Liou, 2006, Synthesis, photoluminescent and electrochromic properties of new aromatic poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s derived from 4,4′-dicarboxy-4″-methyltriphenylamine, Eur. Polym. J., 42, 2283, 10.1016/j.eurpolymj.2006.06.021

Otero, 2006, Synthesis and properties of a novel electrochromic polymer obtained from the electropolymerization of a 9,9′-spirobifluorene-bridged donor–acceptor (D–A) bichromophore system, Chem. Mater., 18, 3495, 10.1021/cm0605264

Turkarslan, 2006, Synthesis, characterization and electrochromic properties of copolymer of terephthalic acid bis-(thiophen-3-yl-methyl) thioester with thiophene, J. Macromol. Sci. A: Pure Appl. Chem., 43, 115, 10.1080/10601320500406016

Yildiz, 2006, A new soluble conducting polymer and its electrochromic devices, J. Polym. Sci. A: Polym. Chem., 44, 2215, 10.1002/pola.21337

Yagi, 2005, Preparation and multicolor electrochromic performance of a WO3/tris(2,2′-bipyridine) ruthenium(II)/polymer hybrid film, Chem. Eur. J., 11, 767, 10.1002/chem.200400323

De Filpo, 2006, Flexible nano-photo-electrochromic film, Chem. Mater., 18, 4662, 10.1021/cm061438m

Yu, 2006, Durable electrochromic coatings prepared from electronically conductive poly(3HT-co-3TPP)-silica hybrid materials, J. Electron. Mater., 35, 1571, 10.1007/s11664-006-0151-8

DeLongchamp, 2004, Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocomposite thin films, Chem. Mater., 16, 4799, 10.1021/cm0496624

Sonmez, 2004, Organic polymeric devices: polychromism with very high coloration efficiency, Chem. Mater., 16, 574, 10.1021/cm0301773

Sonmez, 2004, A red, green and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era, Angew. Chem. Int. Ed., 43, 1498, 10.1002/anie.200352910

Sonmez, 2004, Red, green, and blue colors in polymeric electrochromics, Adv. Mater., 16, 1905, 10.1002/adma.200400546

Sonmez, 2005, Polymer electrochromics, Chem. Commun., 5251, 10.1039/b510230h

Sonmez, 2006, Polymeric electrochromics for data storage, J. Mater. Chem., 16, 2473, 10.1039/b600053c

Zhang, 2003, A new microwave “smart window” based on a poly(3,4-ethylenedioxythiophene) composite, J. Mater. Chem., 13, 16, 10.1039/B205682H

Jang, 2006, Welded electrochromic conductive polymer nanofibers by electrostatic spinning, Adv. Mater., 17, 2177, 10.1002/adma.200500577

Beaupré, 2006, Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers, Chem. Mater., 18, 4011, 10.1021/cm060407o

Wang, 2005, Display device with dual emissive and reflective modes, Appl. Phys. Lett., 87, 113502, 10.1063/1.2043249

Soltani, 2006, 1×2 optical switch devices based on semiconductor-to-metallic phase transition characterictics of VO2 smart coatings, Meas. Sci. Technol., 17, 1052, 10.1088/0957-0233/17/5/S19

Sakai, 2006, Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite film for switching of electric conductivity in response to ultraviolet and visible light, Chem. Mater., 18, 3596, 10.1021/cm060696g

Kim, 2006, New tetrazine-based fluoroelectrochromic window: modulation of the fluorescence through applied potential, Chem. Commun., 3612, 10.1039/b608312a

Byker, 2001, Electrochromics and polymers, Electrochim. Acta, 46, 2015, 10.1016/S0013-4686(01)00418-2

Nelson, 1967, Anodic oxidation of 5,10-dihydro-5,10-dimethylphenazine, Z. Anal. Chem., 224, 184, 10.1007/BF00502648

Holzapfel, 2002, Organic mixed valence compounds with N,N-dihydrodimethyl-phenazine redox centers, J. Chem. Soc. Perkin Trans., 2, 1553, 10.1039/b204392k

N.R. Lynam, Near-infrared reflecting, ultraviolet protected, safety protected, electrochromic vehicular glazing, United States Patent 5,239,406, 1993.

Sigma-Aldrich information, 2006, 〈http://www.sigmaaldrich.com/catalog/search/ProductDetail/ALDRICH/395013〉.

van Konynenburg, 1989, Solar radiation control using NCAP liquid crystal technology, Sol. Energy Mater., 19, 27, 10.1016/0165-1633(89)90021-X

Hakemi, 1998, Industrial development of plastic PDLC: is there a future?, Liq. Cryst. Today, 8, 7, 10.1080/13583149808047713

Fontecchio, 2001, Performance improvements for switchable H-PLDC gratings using morphological studies, Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 230

Pena, 2002, Electro-optic system for online light transmission control of polymer-dispersed liquid crystal windows, Opt. Eng., 41, 1608, 10.1117/1.1481049

Nicoletta, 2004, Electrochromism in switchable nematic emulsions, Appl. Phys. Lett., 84, 4260, 10.1063/1.1758294

Yu, 1997, Developments in suspended particle devices (SPD), Proc. Soc. Photo-Opt. Instrum. Eng., 3138, 217, 10.1117/12.279204

Gyenes, 2002, Electrically adjustable thermotropic windows based on polymer gels, Polym. Adv. Technol., 14, 757, 10.1002/pat.391

Howard, 1995, Optical properties of reversible electrodeposition electrochromic materials, Sol. Energy Mater. Sol. Cells, 39, 309, 10.1016/0927-0248(95)00065-8

Ziegler, 1995, Applications of reversible electrodeposition electrochromic devices, Sol. Energy Mater. Sol. Cells, 39, 317, 10.1016/0927-0248(95)00067-4

Ziegler, 1999, Status of reversible electrodeposition electrochromic devices, Sol. Energy Mater. Sol. Cells, 56, 477, 10.1016/S0927-0248(98)00192-5

Okumu, 2004, In situ measurements of thickness changes and mechanical stress upon gasochromic switching of thin MoOx films, J. Appl. Phys., 95, 7632, 10.1063/1.1728309

Shanak, 2005, Effect of O2 partial pressure and thickness on the gasochromic properties of sputtered V2O5 films, J. Mater. Sci., 40, 3467, 10.1007/s10853-005-2851-5

Martucci, 2003, Nanostructured silicon oxide-nickel oxide sol–gel films with enhanced optical carbon monoxide gas sensitivity, J. Am. Ceram. Soc., 86, 1638, 10.1111/j.1151-2916.2003.tb03533.x

Shim, 2005, Visualization of methanol concentration using the electrochromism of nickel oxide, Electrochem. Solid-State Lett., 8, A277, 10.1149/1.1896467

Georg, 2000, Mechanism of the gasochromic coloration of porous WO3 films, Solid State Ionics, 127, 319, 10.1016/S0167-2738(99)00273-8

Xu, 2002, Gasochromic effect of sol–gel WO3–SiO2 films with evaporated platinum catalyst, Thin Solid Films, 415, 290, 10.1016/S0040-6090(02)00544-8

Wittwer, 2004, Gasochromic windows, Sol. Energy Mater. Sol. Cells, 84, 305, 10.1016/j.solmat.2004.01.040

Shanak, 2004, Effect of Pt-catalyst on gasochromic WO3 films: optical electrical and AFM investigations, Solid State Ionics, 171, 99, 10.1016/j.ssi.2004.04.001

Cheong, 2005, Hydrogen sensors based on gasochromic oxide thin films, J. Korean Phys. Soc., 46, S121

Nowoszin, 2005, Gasochromic tungsten oxide-based film structures, Phys. Stat. Sol. A, 202, 1073, 10.1002/pssa.200420017

Stolze, 2005, Analogy for the maximum obtainable colouration between electrochromic, gasochromic, and electrocolouration in DC-sputtered thin WO3–y films, Thin Solid Films, 476, 185, 10.1016/j.tsf.2004.09.034

Vitry, 2006, Preparation and characterization of gasochromic thin films, Thin Solid Films, 502, 265, 10.1016/j.tsf.2005.07.293

Canut, 2003, Ion beam photography in sol–gel NiO–SiO2 films, Nucl. Instrum. Phys. Res. B, 209, 335, 10.1016/S0168-583X(02)02018-9

Ozkan Zayim, 2006, Irradiation effect in WO3 thin films, Sol. Energy Mater. Sol. Cells, 90, 402, 10.1016/j.solmat.2005.04.029

Granqvist, 2006, Nanomaterials for benign indoor environments: electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning, Sol. Energy Mater. Sol. Cells, 91, 355, 10.1016/j.solmat.2006.10.011

Enache, 2005, Electrical and optical properties of epitaxial YHx switchable mirrors, J. Alloys Compds., 397, 9, 10.1016/j.jallcom.2005.01.039

Lee, 2005, The electron glass in a switchable mirror: relaxation, ageing and universality, J. Phys.: Condens. Matter, 17, L439, 10.1088/0953-8984/17/43/L02

Aruna, 2004, A color-neutral, Gd nanoparticle switchable mirror with improved optical contrast and response time, Adv. Mater., 16, 169, 10.1002/adma.200305810

Giebels, 2004, Highly absorbing black Mg and rare-earth-Mg switchable mirrors, Phys. Rev. B, 69, 205111, 10.1103/PhysRevB.69.205111

Johansson, 2004, Hydrogen uptake and optical properties of sputtered Mg–Ni thin films, J. Phys.: Condens. Matter, 16, 7649, 10.1088/0953-8984/16/43/008

Lohstroh, 2004, Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors, Phys. Rev. Lett., 93, 197404, 10.1103/PhysRevLett.93.197404

Lohstroh, 2005, Double layer formation in Mg–TM switchable mirrors (TM: Ni, Co, Fe), J. Alloys Compds., 404–406, 490, 10.1016/j.jallcom.2004.11.127

van Mechelen, 2004, Mg–Ni–H films as selective coatings: tunable reflectance by layered hydrogenation, Appl. Phys. Lett., 84, 3651, 10.1063/1.1739520

Di Vece, 2005, Structure of the Mg2Ni switchable mirror: an EXAFS investigation, Mater. Chem. Phys., 91, 1, 10.1016/j.matchemphys.2004.09.008

Westerwaal, 2005, Microstructural origin of the black state in Mg2NiHx thin films, J. Alloys Compds., 404–406, 481, 10.1016/j.jallcom.2005.02.087

Borgschulte, 2006, High-throughput concept for tailoring switchable mirrors, Appl. Surf. Sci., 253, 1417, 10.1016/j.apsusc.2006.02.017

Slack, 2006, Metal hydride switchable mirrors: factors influencing dynamic range and stability, Sol. Energy Mater. Sol. Cells, 90, 485, 10.1016/j.solmat.2005.02.015

Pasturel, 2006, Stabilized switchable “black state” in Mg2NiH4/Ti/Pd thin films for optical hydrogen sensing, Appl. Phys. Lett., 89, 021913, 10.1063/1.2221412

Rönnow, 2004, Yttrium hydride layer with switchable microwave properties, Thin Solid Films, 467, 186, 10.1016/j.tsf.2004.03.039

Notten, 2003, Hydride forming electrode materials seen from a kinetic perspective, J. Alloys Compds., 356/357, 759, 10.1016/S0925-8388(03)00085-9

Kumar, 2005, Electrochemical study of Pd capped samarium hydride thin film switchable mirror, Thin Solid Films, 491, 270, 10.1016/j.tsf.2005.05.042

Morin, 1959, Oxides which show a metal-to-metal transition at the Neel temperature, Phys. Rev. Lett., 3, 34, 10.1103/PhysRevLett.3.34

Greenberg, 1983, Undoped and doped VO2 films grown from VO(OC3H7)3, Thin Solid Films, 110, 73, 10.1016/0040-6090(83)90175-X

Jorgenson, 1986, Doped vanadium oxide for optical switching films, Sol. Energy Mater., 14, 205, 10.1016/0165-1633(86)90047-X

Babulanam, 1987, Thermochromic VO2 films for energy efficient windows, Sol. Energy Mater., 16, 347, 10.1016/0165-1633(87)90029-3

Manning, 2002, Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides, J. Mater. Chem., 12, 2936, 10.1039/b205427m

Manning, 2004, Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide, Chem. Mater., 16, 744, 10.1021/cm034905y

Miyazaki, 2006, Effect of buffer layer on VOx film fabrication by reactive RF sputtering, Appl. Surf. Sci., 252, 8367, 10.1016/j.apsusc.2005.11.040

Mlyuka, 2006, Correlation between optical electrical and structural properties of vanadium dioxide thin films, J. Mater. Sci., 41, 5619, 10.1007/s10853-006-0261-y

Parkin, 2006, Intelligent thermochromic windows, J. Chem. Educ., 83, 393, 10.1021/ed083p393

Vernardou, 2006, The growth of thermochromic VO2 films on glass by atmospheric-pressure CVD: a comparative study of precursors CVD methodology, and substrates, Chem. Vapor Deposition, 12, 263, 10.1002/cvde.200506419

Soltani, 2006, Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition, J. Vac. Sci. Technol. A, 24, 612, 10.1116/1.2186661

Wang, 2003, A new method for preparation of vanadium oxide thin film, Semicond. Optoelectron., 24, 280

Wang, 2004, Fabrication of 128-element uncooled VOx thermal IR detectors, J. Infrared Millimeter Waves, 23, 99

Wang, 2005, Fabrication of VO2 films with low transition temperature for optical switching applications, Opt. Commun., 256, 305, 10.1016/j.optcom.2005.07.005

Wentzcovitch, 1994, VO2: Peirls or Mott–Hubbard? A view from band theory, Phys. Rev. Lett., 72, 3389, 10.1103/PhysRevLett.72.3389

Eyert, 2002, The metal–insulator transitions of VO2: a band theoretical approach, Ann. Phys. (Leipzig), 11, 650, 10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-K

Haverkort, 2005, Orbital-assisted metal–insulator transition in VO2, Phys. Rev. Lett., 95, 196404, 10.1103/PhysRevLett.95.196404

Rice, 1994, Comment on VO2: Peirls or Mott–Hubbard? A view from band theory, Phys. Rev. Lett., 73, 3042, 10.1103/PhysRevLett.73.3042

Tanaka, 2003, A new scenario on the metal–insulator transition in VO2, J. Phys. Soc. Jpn., 72, 2433, 10.1143/JPSJ.72.2433

Tanaka, 2004, On the metal–insulator transitions in VO2 and Ti2O3 from a unified viewpoint, J. Phys. Soc. Jpn., 73, 152, 10.1143/JPSJ.73.152

Laad, 2006, Metal–insulator transition in rutile-based VO2, Phys. Rev. Lett. B, 73, 195120, 10.1103/PhysRevB.73.195120

Biermann, 2005, Dynamical singlets and correlation-assisted Peirls transition in VO2, Phys. Rev. Lett., 94, 026404, 10.1103/PhysRevLett.94.026404

Koethe, 2006, Transfer of spectral weight and symmetry across the metal–insulator transition in VO2, Phys. Rev. Lett., 97, 116402, 10.1103/PhysRevLett.97.116402

Becker, 1996, Femtosecond laser excitation dynamics of the semiconductor-metal phase transition in VO2, J. Appl. Phys., 79, 2404, 10.1063/1.361167

Cavalleri, 2001, Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition, Phys. Rev. Lett., 87, 237401, 10.1103/PhysRevLett.87.237401

Cavalleri, 2004, Picosecond soft X-ray absorption measurement of the photoinduced insulator-to-metal transition in VO2, Phys. Rev. B, 69, 153106, 10.1103/PhysRevB.69.153106

Cavalleri, 2004, Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale, Phys. Rev. B, 70, 161102, 10.1103/PhysRevB.70.161102

Lysenko, 2006, Light-induced ultrafast phase transitions in VO2 thin films, Appl. Surf. Sci., 252, 5512, 10.1016/j.apsusc.2005.12.137

Lysenko, 2006, Insulator-to-metal phase transformation of VO2 films upon femtosecond laser excitation, J. Electron. Mater., 35, 1866, 10.1007/s11664-006-0169-y

Vikhnin, 2006, The model of ultrafast light-induced insulator–metal transition in VO2, Solid State Commun., 137, 615, 10.1016/j.ssc.2006.01.006

Jepsen, 2006, Metal–insulator phase transition in a VO2 thin film observed with terahertz spectroscopy, Phys. Rev. B, 74, 205103, 10.1103/PhysRevB.74.205103

Qazilbash, 2006, Correlated metallic state of vanadium dioxide, Phys. Rev. B, 74, 205118, 10.1103/PhysRevB.74.205118

Bugaev, 1986, A study of the metal–semiconductor transition in vanadium oxides, 265

Katzke, 2003, General structural relationships between rutile-type VO2 and the Magnéli-phases VnO2n−1, Z. Kristallogr., 218, 432, 10.1524/zkri.218.6.432.20725

Sobhan, 1996, Thermochromism of sputter deposited WxV1–xO2 films, Sol. Energy Mater. Sol. Cells, 44, 451, 10.1016/S0927-0248(95)00051-8

Jin, 1994, Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature, Jpn. J. Appl. Phys., 33, 1478, 10.1143/JJAP.33.1478

Xu, 2004, Tailoring of luminous transmittance upon switching for thermochromic VO2 films by thickness control, Jpn. J. Appl. Phys., 43, 186, 10.1143/JJAP.43.186

Xu, 2005, Thickness dependence of optical properties of VO2 thin films epitaxially grown on sapphire (0001), Appl. Surf. Sci., 244, 449, 10.1016/j.apsusc.2004.09.157

Case, 1988, Simple resistance model fit to the oxidation of a vanadium film into VO2, J. Vac. Sci. Technol. A, 6, 123, 10.1116/1.574993

Jiang, 1991, Evolution of thermochromism during oxidation of evaporated vanadium films, Appl. Opt., 30, 847, 10.1364/AO.30.000847

Yuan, 2002, Valence reduction process from sol–gel V2O5 to VO2 thin films, Appl. Surf. Sci., 191, 176, 10.1016/S0169-4332(02)00180-0

Rogers, 1991, Characterization of epitaxially grown films of vanadium oxides, J. Appl. Phys., 70, 1412, 10.1063/1.349550

Brassard, 2005, Grain size effect on the semiconductor–metal phase transition characteristics of magnetron-sputtered VO2 thin films, Appl. Phys. Lett., 87, 051910, 10.1063/1.2001139

Aliev, 2006, Effect of grain sizes on the metal–insulator phase transition in vanadium dioxide polycrystalline thin films, Fiz. Tverd. Tela, 48, 682

Narayan, 2006, Phase transition and critical issues in structure–property correlations ov vanadium oxide, J. Appl. Phys., 100, 103524, 10.1063/1.2384798

Rozen, 2006, Two-dimensional current percolation in nanocrystalline vanadium dioxide films, Appl. Phys. Lett., 88, 081902, 10.1063/1.2175490

Fukuma, 1983, Preparation of VO2 thin film and its direct optical bit recording characteristics, Appl. Opt., 22, 265, 10.1364/AO.22.000265

Rakotoniaina, 1993, The thermochromic vanadium dioxide, I: role of stresses and substitution on switching properties, J. Solid State Chem., 103, 81, 10.1006/jssc.1993.1081

Jin, 1995, Relationship between transition temperature and x in V1–xWxO2 films deposited by dual-target magnetron sputtering, Jpn. J. Appl. Phys., 34, 2459, 10.1143/JJAP.34.2459

Lawton, 1995, Effect of tungsten and molybdenum doping on the semiconductor–metallic transition in vanadium dioxide produced by evaporative decomposition of solution and hydrogen reduction, J. Am. Ceram. Soc., 78, 238, 10.1111/j.1151-2916.1995.tb08392.x

Takahashi, 1996, Thermochromic V1–xWxO2 thin films prepared by wet coating using polyvanadate solutions, Jpn. J. Appl. Phys., 35, L438, 10.1143/JJAP.35.L438

Jin, 1998, High-energy W ion implantation into VO2 thin films, Nucl. Instrum. Methods—Phys. Res. B, 141, 419, 10.1016/S0168-583X(98)00177-3

Jin, 1998, Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing, Thin Solid Films, 324, 151, 10.1016/S0040-6090(98)00362-9

Jin, 1999, Growth and characterization of epitaxial films of tungsten-doped vanadium oxides on sapphire (110) by reactive magnetron sputtering, J. Vac. Sci. Technol. A, 17, 1817, 10.1116/1.581896

Jin, 2000, Epitaxial growth of W-doped VO2/V2O3 multilayer on α-Al2O3(110) by reactive magnetron sputtering, Thin Solid Films, 375, 128, 10.1016/S0040-6090(00)01226-8

Tazawa, 1998, Optical constants of V1–xWxO2 films, Appl. Opt., 37, 1858, 10.1364/AO.37.001858

Tazawa, 1998, New material design with V1–xWxO2 film for sky radiator to obtain temperature stability, Sol. Energy, 64, 3, 10.1016/S0038-092X(98)00057-7

Kato, 2003, Study on thermochromic VO2 films grown on ZnO-coated glass substrates for “smart windows”, Jpn. J. Appl. Phys., 42, 6523, 10.1143/JJAP.42.6523

Han, 2004, Characteristics of vanadium-tungsten-oxide bolometric thin films for uncooled IR detectors, J. Korean Phys. Soc., 45, S902

Kim, 2006, Electronic structure of VO2 near phase transition by tunnelling spectroscopy, J. Phys.: Condens. Matter, 18, 9863, 10.1088/0953-8984/18/43/008

Jin, 1996, V1–xMoxO2 thermochromic films deposited by reactive magnetron sputtering, Thin Solid Films, 281–281, 239, 10.1016/0040-6090(96)08641-5

Wu, 1999, Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin films, J. Appl. Phys., 86, 5311, 10.1063/1.371519

Hanlon, 2003, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method, Thin Solid Films, 436, 269, 10.1016/S0040-6090(03)00602-3

Xu, 2004, Study of optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films, J. Mater. Sci., 39, 489, 10.1023/B:JMSC.0000011503.22893.f4

Manning, 2005, APCVD of thermochromic vanadium dioxide thin films: solid solutions V2–xMxO2 (M=Mo,Nb) or composites VO2:SnO2, J. Mater. Chem., 15, 4560, 10.1039/b510552h

Mai, 2006, Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol–gel method, J. Phys. Chem. B, 110, 19083, 10.1021/jp0642701

Guzman, 1995, Thermochromic V1–xNbxO2 sol–gel thin films, Eur. J. Solid State Inorg. Chem., 32, 851

Lu, 1996, Synthesis and phase transition of Cu2+ ion doped VO2 thin films, J. Mater. Sci. Lett., 15, 856, 10.1007/BF00592709

Takahashi, 1999, Thermochromic properties of double-doped VO2 thin films fabricated from polyvanadate-based solutions, Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 26

Soltani, 2004, Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition, Appl. Phys. Lett., 85, 1958, 10.1063/1.1788883

Burkhardt, 2002, Tungsten and fluorine co-doping of VO2 films, Thin Solid Films, 402, 226, 10.1016/S0040-6090(01)01603-0

Phillips, 1987, Electrical studies of reactively sputtered Fe-doped VO2 thin films, Mater. Res. Bull., 22, 1113, 10.1016/0025-5408(87)90241-8

Hörlin, 1972, Electrical and magnetic, properties of V1−xWxO2, 0⩽x⩽0.060, Mater. Res. Bull., 7, 1515, 10.1016/0025-5408(72)90189-4

Tang, 1985, Local atomic and electronic arrangements in WxV1–xO2, Phys. Rev. B, 31, 1000, 10.1103/PhysRevB.31.1000

Kato, 2001, Thermochromic VO2 films heteroepitaxially grown on ZnO coated glass by RF sputtering, Mater. Res. Soc. Symp. Proc., 666, F10.4.1, 10.1557/PROC-666-F10.4

Kato, 2001, Thermochromic non-doped and W-doped VO2 films heteroepitaxially grown on glass substrate using ZnO polycrystalline films as buffer layers, Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 261

Lopez, 2002, Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix, J. Appl. Phys., 92, 4031, 10.1063/1.1503391

Lopez, 2002, Temperature-controlled surface plasmon resonance in VO2 nanorods, Opt. Lett., 27, 1327, 10.1364/OL.27.001327

Lopez, 2002, Size effects in the structural phase transition of VO2 nanoparticles, Phys. Rev. B, 65, 224113, 10.1103/PhysRevB.65.224113

Lopez, 2004, Switchable reflectivity on silicon from a composite VO2–SiO2 protecting layer, Appl. Phys. Lett., 85, 1410, 10.1063/1.1784546

Chen, 2004, The preparation and characterization of transparent nano-sized thermochromic VO2–SiO2 films from the sol–gel process, J. Non-Cryst. Solids, 347, 138, 10.1016/j.jnoncrysol.2004.07.065

Qureshi, 2004, Atmospheric pressure chemical vapour deposition of VO2 and VO2/TiO2 films from the reaction of VOCl3, TiCl4 and water, Mater. Chem., 14, 1190, 10.1039/b316531k

Shen, 2006, Preparation of VO2 films with nanostructure and improvement on its visible transmittance, J. Infrared Millimeter Waves, 25, 199

Miyazaki, 2006, Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering, J. Phys. D: Appl. Phys., 39, 2220, 10.1088/0022-3727/39/10/034

Khan, 1991, Electrochromism and thermochromism of LixVO2 thin films, J. Appl. Phys., 69, 3231, 10.1063/1.348542

Khan, 1988, Optical properties at the metal–insulator transition in thermochromic VO2–xFx thin films, J. Appl. Phys., 64, 3327, 10.1063/1.341514

Khan, 1989, Thermochromic sputter-deposited vanadium oxyfluoride coatings with low luminous absorptance, Appl. Phys. Lett., 55, 4, 10.1063/1.102388

Gadenne, 1988, Optical cross-over analysis of granular gold films at percolation, Opt. Commun., 65, 17, 10.1016/0030-4018(88)90433-6

Yagil, 1988, Scaling and renormalization in transmittance of thin metal films near the percolation threshold, Appl. Phys. Lett., 52, 373, 10.1063/1.99469

Babulanam, 1987, Smart window coatings: some recent advances, Proc. Soc. Photo-Opt. Instrum. Eng., 823, 64

Muraoka, 2002, Metal–insulator transition of VO2 thin films grown on TiO2 (001) substrates, Appl. Phys. Lett., 80, 583, 10.1063/1.1446215

Muraoka, 2002, Large modification of the metal–insulator transition temperature in strained VO2 films grown on TiO2 substrates, J. Phys. Chem. Solids, 63, 965, 10.1016/S0022-3697(02)00098-7

Lee, 2000, Better thermochromic glazing of windows with anti-reflection coating, Thin Solid Films, 365, 5, 10.1016/S0040-6090(99)01112-8

Lee, 2002, Thermochromic glazing of windows with better luminous solar transmittance, Sol. Energy Mater. Sol. Cells, 71, 537, 10.1016/S0927-0248(01)00135-0

Jin, 2002, A VO2-based multifunctional window with highly improved luminous transmittance, Jpn. J. Appl. Phys., 41, L278, 10.1143/JJAP.41.L278

Xu, 2004, Optimization of antireflection coating for VO2-based energy efficient window, Sol. Energy Mater. Sol. Cells, 83, 29, 10.1016/j.solmat.2004.02.014

Saitzek, 2004, New thermochromic bilayers for optical or electronic switching systems, Thin Solid Films, 449, 166, 10.1016/j.tsf.2003.10.013

Hakim, 1988, Electromechanical properties of thin VO2 films on polyimide substrates, Thin Solid Films, 158, L49, 10.1016/0040-6090(88)90037-5

Gregg, 1997, The effect of applied strain on the resistance of VO2 thin films, Appl. Phys. Lett., 71, 3649, 10.1063/1.120469

Bowman, 1998, VO2 thin films: growth and the effect of applied strain on their resistance, J. Mater. Sci. Mater. Electron., 9, 187, 10.1023/A:1008822023407

Wu, 2006, Strain-induced self-organization of metal–insulator domains in single-crystalline VO2 nanobeams, NanoLetters, 6, 2313, 10.1021/nl061831r

Case, 1984, Modification in the phase transition properties of predeposited VO2 films, J. Vac. Sci. Technol. A, 2, 1509, 10.1116/1.572462

Case, 1989, Effects of low-energy low-flux ion bombardment on the properties of VO2 thin films, J. Vac. Sci. Technol. A, 7, 1194, 10.1116/1.576252

Tazawa, 1996, Thin film used to obtain a constant temperature lower than the ambient, Thin Solid Films, 281–282, 232, 10.1016/0040-6090(96)08620-8

Tazawa, 2000, IR properties of SiO deposited on V1–xWxO2 thermochromic films by vacuum evaporation, Thin Solid Films, 375, 100, 10.1016/S0040-6090(00)01233-5

Granqvist, 1981, Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films, J. Appl. Phys., 52, 4205, 10.1063/1.329270

Eriksson, 1983, Infrared optical properties of electron-beam evaporated silicon oxynitride films, Appl. Opt., 22, 3204, 10.1364/AO.22.003204

Deb, 1969, A novel electrophotographic system, Appl. Opt. Suppl., 3, 192, 10.1364/AO.8.S1.000192

Deb, 1973, Optical and photoelectric properties and colour centres in thin films of tungsten oxide, Philos. Mag., 27, 801, 10.1080/14786437308227562

Svensson, 1984, Electrochromic tungsten oxide films for energy efficient windows, Sol. Energy Mater., 11, 29, 10.1016/0165-1633(84)90025-X

Svensson, 1985, Electrochromic coatings for “smart windows”, Sol. Energy Mater., 12, 391, 10.1016/0165-1633(85)90033-4

Svensson, 1986, Electrochromic hydrated nickel oxide coatings for energy efficient windows: optical properties and coloration mechanism, Appl. Phys. Lett., 49, 1566, 10.1063/1.97281

Svensson, 1987, Electrochromism of nickel-based sputtered coatings, Sol. Energy Mater., 16, 19, 10.1016/0165-1633(87)90004-9

Svensson, 1987, Optical properties of electrochromic hydrated nickel oxide coatings made by RF-sputtering, Appl. Opt., 26, 1554, 10.1364/AO.26.001554

Estrada, 1988, Electrochromic nickel-oxide-based coatings made by reactive DC-magnetron sputtering: preparation and optical properties, J. Appl. Phys., 64, 3678, 10.1063/1.341410

Estrada, 1991, Infrared reflectance spectroscopy of electrochromic NiOxHy films made by reactive dc sputtering, J. Mater. Res., 6, 1715, 10.1557/JMR.1991.1715

LaPointe, 2001, 2000 survey of window manufacturers on the subject of switchable glass, Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 112

Sottile, 2005, 2004 survey of United States architects on the subject of switchable glazings, Mater. Sci. Eng. B, 119, 240, 10.1016/j.mseb.2004.12.077

Jaksic, 2003, A feasibility study of electrochromic windows in vehicles, Sol. Energy Mater. Sol. Cells, 79, 409, 10.1016/S0927-0248(02)00475-0

Granqvist, 2006, Electrochromic materials: out of a niche, Nat. Mater., 5, 89, 10.1038/nmat1577

Lampert, 1999, Durability evaluation of electrochromic devices—an industry perspective, Sol. Energy Mater. Sol. Cells, 56, 449, 10.1016/S0927-0248(98)00185-8

Monk, 1999, Charge movement through electrochromic thin-film tungsten trioxide, Crit. Rev. Solid State Mater. Sci., 24, 193, 10.1080/10408439991329198

Rauh, 1999, Electrochromic widows: an overview, Electrochim. Acta, 44, 3165, 10.1016/S0013-4686(99)00034-1

Heusing, 2005, Sol–gel coatings for electrochromic devices, 719

Sian, 2005, Effect of size and valency of intercalant ions on optical properties of polycrystalline MoO3 films, J. Electrochem. Soc., 152, A2323, 10.1149/1.2104007

Sian, 2005, Stoichiometric amorphous MoO3 films: a route to high performance electrochromic devices, J. Appl. Phys., 98, 026104, 10.1063/1.1949271

Sian, 2005, Effect of reduced states of Mo on optical absorption in amorphous/polycrystalline MoO3 thin films, Electrochem. Solid-State Lett., 8, A96, 10.1149/1.1845053

Sian, 2005, Effect of microstructure and stoichiometry on absorption in Mg intercalated MoO3 thin films, Electrochem. Solid-State Lett., 9, A120, 10.1149/1.2163427

Kraft, 2006, Large-area electrochromic glazing with ion-conducting PVB interlayer and two complementary electrodeposited electrochromic layers, Sol. Energy Mater. Sol. Cells, 90, 469, 10.1016/j.solmat.2005.01.019

Granqvist, 1993, Transparent conductive electrodes for electrochromic devices, Appl. Phys. A, 57, 19, 10.1007/BF00331211

Wu, 2004, Transparent conductive carbon nanotube films, Science, 305, 1273, 10.1126/science.1101243

Lefrou, 2006, Testing of electrochromic materials using symmetrical devices, J. Appl. Electrochem., 36, 1011, 10.1007/s10800-006-9169-0

Georg, 2005, Phase transitions of the WO3 layer in photoelectrochemical devices, J. New Mater. Electrochem. Syst., 8, 319

Georg, 2005, Rate-determining processes in photoelectrochemical devices, J. New Mater. Electrochem. Syst., 8, 329

Georg, 2006, Photoelectrochromic window with Pt catalyst, Thin Solid Films, 502, 246, 10.1016/j.tsf.2005.07.291

Rönnow, 1996, Spectroscopic light scattering from electrochromic tungsten-oxide-based films, J. Appl. Phys., 80, 423, 10.1063/1.362778

Lindström, 1997, Electrochromic control of thin film light scattering, J. Appl. Phys., 81, 1464, 10.1063/1.363882

Le Bellac, 1995, Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering, Appl. Phys. Lett., 66, 10.1063/1.113343

Hohnholz, 2001, Line patterening of conducting polymers: new horizons for inexpensive disposable electronic devices, Synth. Met., 121, 1327, 10.1016/S0379-6779(00)00632-9

Garnier, 1994, All-polymer field-effect transistor realized by printing techniques, Science, 265, 1684, 10.1126/science.265.5179.1684

de Gans, 2004, Inkjet printing of polymers: state of the art and future developments, Adv. Mater., 16, 203, 10.1002/adma.200300385

Argun, 2005, Line patterning for flexible and laterally configured electrochromic devices, J. Mater. Chem., 15, 1793, 10.1039/b417607c

Azens, 2001, Electrochromic devices embodying W oxide/Ni oxide tandem films, J. Appl. Phys., 89, 7885, 10.1063/1.1337091

Yoo, 2006, Improved electrochromic device with an inorganic solid electrolyte protective layer, Sol. Energy Mater. Sol. Cells, 90, 477, 10.1016/j.solmat.2005.04.033

Heusing, 2006, Grey, brown and blue coloring sol–gel electrochromic devices, Thin Solid Films, 502, 240, 10.1016/j.tsf.2005.07.282

Thangadurai, 2002, Complete, reversible H+/Li+ ion exchange reaction between rhombohedral LiMO3 and perovskite-type HMO3 (M=Nb, Ta), Mater. Res. Bull., 37, 2417, 10.1016/S0025-5408(02)00941-8

Thangadurai, 2004, Li0.3Sr0.6B0.5Ti0.5O3 (B=Nb, Ta) and Li0.3Sr0.6Ta0.5Ti0.5–xFexO3 (0 < x < 0.3): novel perovskite-type materials for monolithic electrochromic devices, J. Electrochem. Soc., 151, H1, 10.1149/1.1629102

Marcel, 2001, An all-plastic WO3·H2O/polyaniline electrochromic device, Solid State Ionics, 143, 89, 10.1016/S0167-2738(01)00837-2

Heckner, 2002, Similarities between electrochromic windows and thin film batteries, Solid State Ionics, 152–153, 899, 10.1016/S0167-2738(02)00446-0

Knauth, 2002, Solid-state ionics: roots, status, and future prospects, J. Am. Ceram. Soc., 85, 1654, 10.1111/j.1151-2916.2002.tb00334.x

Avendaño, 2006, Electrochromic materials and devices: brief survey and new data on optical absorption in tungsten oxide and nickel oxide films, Thin Solid Films, 496, 30, 10.1016/j.tsf.2005.08.183

Avendaño, 2007, Sputter deposited electrochromic films and devices based on these: progress on nickel-oxide-based films, Mater. Sci. Eng. B, 138, 112, 10.1016/j.mseb.2005.07.029

Niklasson, 2007, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide and devices based on these, J. Mater. Chem., 17, 127, 10.1039/B612174H

Abramova, 2005, Preparation and properties of electrochromic coatings based on nanoparticle tungsten oxide, Mendeleev Commun., 15, 178, 10.1070/MC2005v015n05ABEH002158

Abramova, 2006, Nanoporous electrochromic coatings based on tungsten oxide, Dokl. Akad. Nauk, 407, 44

Deepa, 2005, Effect of oxalic acid dihydrate on optical and electrochemical properties of sol–gel derived amorphous electrochromic WO3 films, Electrochim. Acta, 50, 3545, 10.1016/j.electacta.2005.01.008

Deepa, 2005, Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films, Appl. Surf. Sci., 252, 1568, 10.1016/j.apsusc.2005.02.123

Deepa, 2006, Electrochromic nanostructured tungsten oxide films by sol–gel: structure and intercalation properties, J. Electrochem. Soc., 153, C365, 10.1149/1.2184072

Deepa, 2006, Spin coated versus dip coated electrochromic tungsten oxide films: structure, morphology, optical and electrochemical properties, Electrochim. Acta, 51, 1974, 10.1016/j.electacta.2005.06.027

Deepa, 2006, Effect of humidity on structure and electrochromic properties of sol–gel-derived tungsten oxide films, Sol. Energy Mater. Sol. Cells, 90, 2665, 10.1016/j.solmat.2006.02.032

Deepa, 2006, A comparison of electrochromic properties of sol–gel derived amorphous and nanocrystalline tungsten oxide films, Curr. Appl. Phys., 7, 220, 10.1016/j.cap.2006.06.001

Deepa, 2006, Influence of annealing on electrochromic performance of template assisted, electrochemically grown, nanostructured assembly of tungsten oxide, Acta Mater., 54, 4583, 10.1016/j.actamat.2006.05.044

Deepa, 2006, A case study of optical properties and structure of sol–gel derived nanocrystalline electrochromic WO3 films, J. Phys. D: Appl. Phys., 39, 1885, 10.1088/0022-3727/39/9/025

Deepa, 2006, Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows, Nanotechnology, 17, 2625, 10.1088/0957-4484/17/10/030

Gesheva, 2005, Optical coatings of CVD-transition metal oxides as functional layers in “smart windows” and X-ray mirrors, J. Optoelecton. Adv. Mater., 7, 1243

Gesheva, 2006, Electrically activated thin film optical coatings as functional layers in electrochromic devices, Sol. Energy Mater. Sol. Cells, 90, 2532, 10.1016/j.solmat.2006.03.027

Hamelmann, 2005, Optical and electrochromic characterization of multilayered mixed metal oxide thin films, J. Optoelectron. Adv. Mater., 7, 393

Novinrooz, 2005, Structural and optical properties of WO3 electrochromic layers prepared by the sol–gel method, Central Eur. Sci. J., 3, 456, 10.2478/BF02475650

Srivastava, 2005, Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films, Solid State Ionics, 176, 1161, 10.1016/j.ssi.2004.10.006

Tsirlina, 2005, Electrochromic behavior of oxotungstates fabricated by means of cathodic electrocrystallization, Solid State Ionics, 176, 1681, 10.1016/j.ssi.2005.04.017

Vijayalakshmi, 2005, Structural, electrochromic and FT-IR studies on electrodeposited tungsten trioxide films, Curr. Appl. Phys., 3, 171, 10.1016/S1567-1739(02)00196-7

Vijayalakshmi, 2006, Characterization of WO3 thin films prepared at different deposition currents on CTO substrates, Synth. React. Inorg. Metal-Org. Nano-Metal Chem., 36, 89, 10.1080/15533170500478610

Yang, 2005, Structures and electrochromic properties of tungsten oxide films prepared by magnetron sputtering, Appl. Surf. Sci., 252, 2029, 10.1016/j.apsusc.2005.03.170

Yuan, 2005, Study on preparation and performance of electrochromic mesoporous tungsten trioxide films, Acta Chim. Sinica, 20, 1884

Agnihotry, 2006, Towards electrochromic stability in sol–gel-derived tungsten oxide films: cyclic voltammetric and spectrophotometric investigations, Sol. Energy Mater. Sol. Cells, 90, 15, 10.1016/j.solmat.2005.01.006

Avellaneda, 2006, Kinetics and thermodynamic behavior of WO3 and WO3:P thin films, Sol. Energy Mater. Sol. Cells, 90, 395, 10.1016/j.solmat.2005.04.028

Costa, 2006, Optoelectrochemical characterization of electrochemical devices with starch based electrolytes, Mol. Cryst. Liq. Cryst., 447, 45, 10.1080/15421400500380036

Hirotsune, 2006, Layer-selection-type recordable optical disk with inorganic electrochromic film, Jpn. J. Appl. Phys., 45, 1235, 10.1143/JJAP.45.1235

Karakurt, 2006, Electrochromic switching of WO3 nanostructures and thin films, Appl. Phys. A, 83, 1, 10.1007/s00339-005-3466-z

Krasnov, 2006, Kinetics of coloration of electrochromic tungsten oxide thin films produced by cathodic electrodeposition, Zh. Prikl. Khim., 79, 251

Krasnov, 2006, Optical and kinetic properties of cathodically deposited amorphous tungsten oxide films, J. Non-Cryst. Solids, 352, 3995, 10.1016/j.jnoncrysol.2006.08.007

Ortega, 2006, Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis, Sol. Energy Mater. Sol. Cells, 90, 2471, 10.1016/j.solmat.2006.03.033

Palgrave, 2006, Chemical vapour deposition of titanium chalcogenides and pnictides and tungsten oxide thin films, New J. Chem., 30, 505, 10.1039/b513177d

Sadiki, 2005, Properties and electrochromic performances of reactively sputtered tungsten oxide films with water as reactive gas, Surf. Coatings Technol., 200, 232, 10.1016/j.surfcoat.2005.02.195

Siekierski, 2006, Organic esters of phosphoric acid as electrolytes for a protonic photoelectrochromic window, J. Power Sources, 159, 399, 10.1016/j.jpowsour.2006.03.011

Solarska, 2006, Electrochromic and photoelectrochemical characteristics of nanostructured WO3 films prepared by a sol–gel method, C. R. Chim., 9, 301, 10.1016/j.crci.2005.02.044

Subrahmanyam, 2006, Oxygen-sputtered tungsten oxide thin films for enhanced electrochromic properties, Electrochem. Solid-State Lett., 9, H111, 10.1149/1.2351955

Subrahmanyam, 2007, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films, Sol. Energy Mater. Sol. Cells, 91, 266, 10.1016/j.solmat.2006.09.005

Pennarun, 2007, Electrochromic devices operating with electrolytes based on boronate ester compounds and various alkali metal salts, Sol. Energy Mater. Sol. Cells, 91, 330, 10.1016/j.solmat.2006.09.009

Gesheva, 2005, Optoelectronic properties of CVD MoO3 and MoO3–WO3 films and their applications in electrochromic cells, J. Optoelectron. Adv. Mater., 7, 169

Gesheva, 2006, A low temperature atmospheric pressure CVD process for growing thin films of MoO3 and MoO3-WO3 for electrochromic device applications, Chem. Vapor Deposition, 12, 231, 10.1002/cvde.200506404

Patil, 2005, Electrochromic properties of spray deposited TiO2-doped WO3 thin films, Appl. Surf. Sci., 250, 117, 10.1016/j.apsusc.2004.12.042

Patil, 2005, Structural, electrical and optical properties of TiO2 doped WO3 thin films, Appl. Surf. Sci., 252, 1643, 10.1016/j.apsusc.2005.03.074

Hsu, 2006, Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films, Thin Solid Films, 494, 228, 10.1016/j.tsf.2005.08.124

Shim, 2006, Ta2O5-incorporated WO3 nanocomposite film for improved electrochromic performance in an acidic solution, J. Nanosci. Nanotechnol., 6, 3572, 10.1166/jnn.2006.059

Yang, 2006, Structural and electrochromic characterizations of pulsed laser deposited TaxW1–xO3–x/2 Films, J. Vac. Sci. Technol. A, 24, 1128, 10.1116/1.2209652

Yang, 2006, Structures and electrochromic properties of Ta0.3W0.7Ox thin films deposited by pulsed laser ablation, Thin Solid Films, 494, 28, 10.1016/j.tsf.2005.07.169

Azimirad, 2006, An investigation on electrochromic properties of (WO3)1–x(Fe2O3)x thin films, Thin Solid Films, 515, 644, 10.1016/j.tsf.2005.12.229

Park, 2005, Electrochromic properties of Au–WO3 nanocomposite thin-film electrode, Electrochim. Acta, 50, 4690, 10.1016/j.electacta.2005.03.001

Park, 2006, Modified electrochromism of tungsten oxide via platinum nanophases, Appl. Phys. Lett., 88, 211107, 10.1063/1.2206130

Huguenin, 2005, Electrochemical and electrochromic properties of layer-by-layer films from WO3 and Chitosan, J. Phys. Chem. B, 109, 12837, 10.1021/jp0504165

Huguenin, 2005, Layer-by-layer hybrid films incorporating WO3, TiO2, and Chitosan, Chem. Mater., 17, 6739, 10.1021/cm051113q

Xue, 2005, High-contrast electrochromic multilayer films of molybdenum-doped hexagonal tungsten bronze (Mo0.05-HTB), J. Mater. Chem., 15, 4793, 10.1039/b511659g

Sone, 2006, Electrochromic hysteresis performance of a Prussian blue film arising from electron-transfer control by a tris(2,2′-bipyridine)ruthenium(II)-doped WO3 film as studied by a spectrocyclic voltammetry technique, Chem. Eur. J., 12, 8558, 10.1002/chem.200600369

Xue, 2006, High-contrast and fast switching speed multi-hue electrochromic films containing metal ion-doped nanomaterials, Nanotechnology, 17, 5306, 10.1088/0957-4484/17/21/004

Sivakumar, 2006, An electrochromic device (ECD) cell characterization on electron beam evaporated MoO3 films by intercalating/deintercalating the H+ ions, Curr. Appl. Phys., 7, 76, 10.1016/j.cap.2005.12.001

Sivakumar, 2006, Intercalation studies on electron beam evaporated MoO3 films for electrochemical devices, Sol. Energy Mater. Sol. Cells, 90, 2438, 10.1016/j.solmat.2006.03.016

Patil, 2005, Electrochromism in spray deposited iridium oxide thin films, Electrochim. Acta, 50, 2527, 10.1016/j.electacta.2004.10.081

Patil, 2005, Effect of substrate temperature on electrochromic properties of spray-deposited Ir-oxide thin films, Appl. Surf. Sci., 249, 367, 10.1016/j.apsusc.2004.12.014

Patil, 2006, Effect of film thickness on electrochromic activity of spray deposited iridium oxide thin films, Mater. Chem. Phys., 99, 309, 10.1016/j.matchemphys.2005.10.029

Backholm, 2006, Electrochemical and optical properties of sputter deposited Ir–Ta and Ir oxide thin films, Sol. Energy Mater. Sol. Cells, 90, 414, 10.1016/j.solmat.2005.04.030

Patil, 2006, Promotion of electrochromism in spray-deposited molybdenum oxide-doped iridium oxide thin films, Sol. Energy Mater. Sol. Cells, 90, 1629, 10.1016/j.solmat.2005.09.004

Patil, 2006, Properties of mixed molybdenum oxide-iridium oxide thin films synthesized by spray pyrolysis, Appl. Surf. Sci., 252, 8371, 10.1016/j.apsusc.2005.11.041

Lee, 2005, Effect of substrate temperature on the optical and the electrochromic properties of sputtered TiO2 thin films, J. Korean Phys. Soc., 46, 1383

Wang, 2006, Electrochromic properties of sputtered TiO2 thin films, J. Solid State Electrochem., 10, 255, 10.1007/s10008-005-0690-6

Ivanova, 2005, Electrochromic investigation of sol–gel-derived thin films of TiO2–V2O5, Mater. Res. Bull., 40, 411, 10.1016/j.materresbull.2004.12.007

Seman, 2005, An investigation of the role of plasma conditions on the deposition rate of electrochromic vanadium oxide thin films, J. Non-Cryst. Solids, 351, 1987, 10.1016/j.jnoncrysol.2005.05.016

Wu, 2005, Optical absorption edge evolution of vanadium pentoxide films during lithium intercalation, Thin Solid Films, 485, 284, 10.1016/j.tsf.2005.03.039

Liberatore, 2006, Effect of the organic–inorganic template ICS-PPG on sol–gel deposited V2O5 electrochromic thin film, Sol. Energy Mater. Sol. Cells, 90, 434, 10.1016/j.solmat.2005.04.035

Wang, 2006, Li+-intercalation electrochemical/electrochromic properties of vanadium pentoxide films by sol electrophoretic deposition, Electrochim. Acta, 51, 4865, 10.1016/j.electacta.2006.01.026

Avellaneda, 2006, Optical and electrochemical properties of V2O5:Ta sol–gel thin films, Sol. Energy Mater. Sol. Cells, 90, 444, 10.1016/j.solmat.2005.04.031

Bouessay, 2006, Electrochromic degradation in nickel oxide thin films: a self-discharge and dissolution phenomenon, Electrochim. Acta, 50, 3737, 10.1016/j.electacta.2005.01.020

Kamal, 2005, The electrochromic behavior of nickel oxide films sprayed at different preparative conditions, Thin Solid Films, 483, 330, 10.1016/j.tsf.2004.12.022

Abe, 2006, Electrochromic properties of sputtered Ni oxide thin films in neutral KCl electrolytes, Electrochem. Solid-State Lett., 9, G17, 10.1149/1.2137471

Abe, 2006, Electrochromic properties of sputtered Ni oxide thin films in acidic KCl+H2SO4 aqueous solutions, Electrochem. Solid-State Lett., 9, J31, 10.1149/1.2205118

Abe, 2006, Effect of O2 flow concentration during reactive sputtering of Ni oxide films on their electrochemical and electrochromic properties in aqueous acidic and basic electrolyte solutions, Jpn. J. Appl. Phys., 45, 7780, 10.1143/JJAP.45.7780

Cerc Korošec, 2006, Sol–gel prepared NiO thin films for electrochromic applications, Acta Chim. Slovenica, 53, 136

Chen, 2006, The electrochromic properties of nickel oxide by chemical deposition and oxidization, Mater. Lett., 60, 790, 10.1016/j.matlet.2005.10.031

Magaña, 2006, Electrochemically induced electrochromic properties in nickel thin films deposited by DC magnetron sputtering, Sol. Energy, 80, 161, 10.1016/j.solener.2005.04.006

Penin, 2006, Improved cyclability by tungsten addition in electrochromic NiO thin films, Sol. Energy Mater. Sol. Cells, 90, 422, 10.1016/j.solmat.2005.01.018

Al-Kahlout, 2006, Brown coloring electrochromic devices based on NiO–TiO2 layers, Sol. Energy Mater. Sol. Cells, 90, 3583, 10.1016/j.solmat.2006.06.053

Al-Kahlout, 2007, Coloration mechanisms of sol–gel NiO–TiO2 layers studied by EQCM, Sol. Energy Mater. Sol. Cells, 91, 213, 10.1016/j.solmat.2006.08.003

Ahn, 2005, Synthesis and characterization of NiO–Ta2O5 nanocomposite electrode for electrochromic devices, Electrochem. Commun., 7, 567, 10.1016/j.elecom.2005.03.016

Lee, 2005, Solid-state nanocomposite electrochromic pseudocapacitors, Electrochem. Solid-State Lett., 8, A188, 10.1149/1.1861050

Makimura, 2006, Cobalt and tantalum additions for enhanced electrochromic performances of nickel-based-oxide thin films grown by pulsed laser deposition, Appl. Surf. Sci., 252, 4593, 10.1016/j.apsusc.2005.07.086

He, 2006, Characterization and electrochromic properties of CuxNi1–xO films prepared by sol–gel dip-coating, Sol. Energy, 80, 226, 10.1016/j.solener.2005.02.007

Zhou, 2006, Study of the preparation and electrochromic performance of PEO-doped NiO films by sol–gel method, Acta Chim. Sinica, 64, 1004

Bueno, 2005, EQCM study during lithium insertion/deinsertion processes in Nb2O5 films prepared by polymeric precursor method, Solid State Ionics, 176, 1175, 10.1016/j.ssi.2005.02.007

Rosario, 2006, Influence of the crystallinity on the Li+ intercalation process in Nb2O5 films, J. Solid State Electrochem., 9, 665, 10.1007/s10008-004-0637-3

Azens, 1995, Electrochromism of fluorinated and electron bombarded tungsten oxide films, J. Appl. Phys., 78, 1968, 10.1063/1.360169

Brezesinski, 2006, Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance, Small, 2, 1203, 10.1002/smll.200600176

Lee, 2006, Crystalline WO3 nanoparticles for highly improved electrochromic applications, Adv. Mater., 18, 763, 10.1002/adma.200501953

Liao, 2006, WO3–x nanowires based electrochromic devices, Sol. Energy Mater. Sol. Cells, 90, 1147, 10.1016/j.solmat.2005.07.009

Wei, 2006, Electrochromics of single crystalline WO3·H2O nanorods, Electrochem. Commun., 8, 293, 10.1016/j.elecom.2005.12.008

Ghikov, 2006, TiO2 nanotubes: H+ insertion and strong electrochromic effects, Electrochem. Commun., 8, 528, 10.1016/j.elecom.2006.01.015

Tokudome, 2005, Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed., 44, 1974, 10.1002/anie.200462448

Takahashi, 2005, Growth and electrochromic properties of single-crystal V2O5 nanorod arrays, Appl. Phys. Lett., 86, 053102, 10.1063/1.1857087

Cheng, 2006, V2O5 nanowires as a functional material for electrochromic devices, Sol. Energy Mater. Sol. Cells, 90, 1156, 10.1016/j.solmat.2005.07.006

Kuai, 2005, Tunable electrochromic photonic crystals, Appl. Phys. Lett., 86, 221110, 10.1063/1.1929079

Khalack, 2006, Tunable pseudogaps in electrochromic WO3 inverted opal photonic crystals, Appl. Phys. Lett., 89, 211112, 10.1063/1.2397012

Verma, 2005, Sol–gel processed cerium oxide and mixed cerium–titanium oxide films as passive counter electrodes for transmissive electrochromic devices, Indian J. Chem., 44A, 1756

Verma, 2006, Effect of citric acid on properties of CeO2 films for electrochromic windows, Sol. Energy Mater. Sol. Cells, 90, 1640, 10.1016/j.solmat.2005.09.001

Siokou, 2006, Substrate related structural, electronic and electrochemical properties of evaporated CeO2 ion storage layers, Thin Solid Films, 514, 87, 10.1016/j.tsf.2006.02.077

Berton, 2003, Thin film of CeO2–SiO2: a new ion storage layer for smart windows, Sol. Energy Mater. Sol. Cells, 80, 443, 10.1016/j.solmat.2003.08.012

Kullman, 1997, Decreased electrochromism in Li intercalated Ti oxide containing La, Ce, and Pr, J. Appl. Phys., 81, 8002, 10.1063/1.365404

Strømme Mattsson, 1997, Li intercalation in transparent Ti–Ce oxide films: energetics and ion dynamics, J. Appl. Phys., 81, 6432, 10.1063/1.364424

Veszelei, 1998, Optical constants of sputter deposited Ti–Ce oxide and Zr–Ce oxide films, Appl. Opt., 37, 5993, 10.1364/AO.37.005993

Verma, 2005, Influence of aging and composition of the precursor sol on the properties of CeO2–TiO2 Thin films for electrochromic applications, J. Non-Cryst. Solids, 351, 2501, 10.1016/j.jnoncrysol.2005.07.002

Verma, 2005, Sol–gel processed nanostructured CeO2–TiO2 thin films for electrochromic applications, Mater. Lett., 59, 3423, 10.1016/j.matlet.2005.06.007

Verma, 2006, Effect of different precursor sols on the properties of CeO2–TiO2 films for electrochromic window applications, Electrochim. Acta, 51, 4639, 10.1016/j.electacta.2005.12.048

Verma, 2006, Variations in the structural, optical and electrochemical properties of CeO2–TiO2 films as a function of TiO2 content, Appl. Surf. Sci., 252, 5131, 10.1016/j.apsusc.2005.07.035

Avellaneda, 2006, The CeO2–TiO2–ZrO2 sol–gel film: a counter electrode for electrochromic devices, Thin Solid Films, 471, 100, 10.1016/j.tsf.2004.04.039

Veszelei, 1997, Transparent ion intercalation films of Zr–Ce oxide, J. Appl. Phys., 81, 2024, 10.1063/1.364059

Veszelei, 1998, Optical and electrochemical properties of Li+ intercalated Zr–Ce and Hf–Ce oxide films, J. Appl. Phys., 83, 1670, 10.1063/1.366883

Zheng, 1993, Optical properties of sputter-deposited cerium oxyfluoride thin films, Appl. Opt., 32, 6303, 10.1364/AO.32.006303

Chen, 2002, A complementary electrochromic system based on Prussian blue and indium hexacyanoferrate, Solid State Electrochem., 7, 6, 10.1007/s10008-002-0272-9

de Tacconi, 2003, Metal hexacyanoferrates: electrosynthesis, in-situ characterization, and applications, Chem. Mater., 15, 3046, 10.1021/cm0341540

Agnihotry, 2006, Electrodeposited Prussian blue films: annealing effects, Electrochim. Acta, 51, 4291, 10.1016/j.electacta.2005.12.008

Hjelm, 1996, Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3, Phys. Rev. B, 54, 2436, 10.1103/PhysRevB.54.2436

Chatten, 2005, The oxygen vacancy in crystal phases of WO3, J. Phys. Chem. B, 109, 3146, 10.1021/jp045655r

Niklasson, 2004, Electrochromic tungsten oxide: the role of defects, Sol. Energy Mater. Sol. Cells, 84, 315, 10.1016/j.solmat.2004.01.045

Ramana, 2005, Electron microscopy investigation of structural transformations in tungsten oxide (WO3) thin films, Phys. Stat. Sol. A, 202, R108, 10.1002/pssa.200521076

Ramana, 2006, Structural stability and phase transitions in WO3 thin films, J. Phys. Chem., 110, 10430, 10.1021/jp056664i

de Wijs, 1999, Structure and electronic properties of amorphous WO3, Phys. Rev. B, 60, 16463, 10.1103/PhysRevB.60.16463

Anderson, 1975, Model for the electronic structure of amorphous semiconductors, Phys. Rev. Lett., 34, 953, 10.1103/PhysRevLett.34.953

Honig, 1980, Electronic band structure of oxides with metallic or semiconducting characteristics, 1

Strømme, 2004, New probe of the electronic structure of amorphous materials, Phys. Rev. Lett., 93, 206403, 10.1103/PhysRevLett.93.206403

Niklasson, 2006, Electronic states in intercalation materials studied by electrochemical techniques, Mod. Phys. Lett., 20, 863, 10.1142/S0217984906011438

Niklasson, 2006, Electrochemical studies of the electron states of disordered electrochromic oxides, Sol. Energy Mater. Sol. Cells, 90, 385, 10.1016/j.solmat.2005.04.027

Berggren, 2004, Electrical conductivity as a function of temperature in amorphous lithium tungsten oxide, Sol. Energy Mater. Sol. Cells, 84, 329, 10.1016/j.solmat.2004.02.049

Larsson, 2003, Optical absorption of Li-intercalated polycrystalline tungsten oxide films: comparison to large polaron theory, Solid State Ionics, 165, 35, 10.1016/j.ssi.2003.08.017

Ederth, 2004, Small polaron formation in porous WO3–x nanoparticle films, J. Appl. Phys., 96, 5722, 10.1063/1.1804617

Raj, 2005, Angle-resolved photoemission spectroscopy of the metallic sodium tungsten bronzes NaxWO3, Phys. Rev. B, 72, 125125, 10.1103/PhysRevB.72.125125

Wittwer, 1978, Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes, Solid State Commun., 25, 977, 10.1016/0038-1098(78)90887-6

Bryksin, 1982, Optical intraband absorption in disordered systems with strong electron–phonon interaction, Fiz. Tverd. Tela, 24, 1110

Berggren, 2001, Polaron absorption in amorphous tungsten oxide films, J. Appl. Phys., 90, 1860, 10.1063/1.1384853

Broclawik, 2006, Quantum chemical modeling of electrochromism of tungsten oxide films, J. Chem. Phys., 124, 054709, 10.1063/1.2150824

Denesuk, 1996, Site-saturation model for the optical efficiency of tungsten oxide-based devices, J. Electrochem. Soc., 143, L186, 10.1149/1.1837080

Berggren, 2006, Optical charge transfer absorption in lithium-intercalated tungsten oxide thin films, Appl. Phys. Lett., 88, 081906, 10.1063/1.2177548

Goldner, 1983, High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films, Appl. Phys. Lett., 43, 1093, 10.1063/1.94254

Goldner, 1985, Optical frequencies free electron scattering studies on electrochromic materials for variable reflectivity windows, Sol. Energy Mater, 12, 403, 10.1016/0165-1633(85)90034-6

Svensson, 1984, Modulated transmittance and reflectance in crystalline electrochromic WO3 films, Appl. Phys. Lett., 45, 828, 10.1063/1.95415

Powell, 1970, Optical properties of NiO and CoO, Phys. Rev. B, 2, 2182, 10.1103/PhysRevB.2.2182

Scheidt, 1981, The oxidation of nickel: a study of empty electronic states by inverse photoemission and soft X-ray appearance potential spectroscopy, Surf. Sci., 112, 97, 10.1016/0039-6028(81)90336-8

Gorschlüter, 1993, EELS study of single crystalline NiO(100), Int. J. Mod. Phys. B, 7, 341, 10.1142/S0217979293000718

Li, 2005, Quasiparticle energy bands of NiO in the GW approximation, Phys. Rev. B, 71, 193102, 10.1103/PhysRevB.71.193102

Nakajima, 2005, Surface metallic nature caused by an in-gap state of reduced NiO: a photoemission study, J. Electron Spectr. Relat. Phenom., 144–147, 873, 10.1016/j.elspec.2005.01.238

2000, vol. 41

Azens, 2002, Highly transparent Ni–Mg and Ni–V–Mg oxide films for electrochromic applications, Thin Solid Films, 422, 1, 10.1016/S0040-6090(02)00437-6

Avendaño, 2003, Optimized nickel-oxide-based thin films, Solid State Ionics, 165, 169, 10.1016/j.ssi.2003.08.029

Avendaño, 2003, Nickel-oxide-based electrochromic films with optimized optical properties, J. Solid State Electrochem., 8, 37, 10.1007/s10008-003-0405-9

Avendaño, 2004, Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta, Sol. Energy Mater. Sol. Cells, 84, 337, 10.1016/j.solmat.2003.11.032

Avendaño, 2005, Proton diffusion and electrochromism in hydrated NiOy and Ni1–xVxOy thin films, J. Electrochem. Soc., 152, F203, 10.1149/1.2077308

Avendaño, 2005, Changes in the local structure of nanocrystalline films of hydrated nickel vanadium oxide upon ozone-induced coloration, Phys. Scr. T, 115, 464, 10.1238/Physica.Topical.115a00464

E. Avendaño, H. Rensmo, A. Azens, A. Sandell, G.A. Niklasson, H. Siegbahn, C.G. Granqvist, Coloration mechanism in proton intercalated electrochromic hydrated NiOy and Ni1–xVxOy thin films, to be published.

Bode, 1966, Zur Kenntnis der Nickelhydroxidelektrode—I. über das Nickel(II)-hydroxidhydrat, Electrochim. Acta, 11, 1079, 10.1016/0013-4686(66)80045-2

Bode, 1969, Zur Kenntnis der Nickelhydroxidelektrode, II: über die Oxydationsprodukten von Nickel(II)-hydroxiden, Z. Anorg. Allg. Chem., 366, 1, 10.1002/zaac.19693660102

Ahn, 2002, All-solid-state electrochromic device composed of WO3 and Ni(OH)2 with a Ta2O5 protective layer, Appl. Phys. Lett., 81, 3930, 10.1063/1.1522478

Ahn, 2003, Bleached state transmittance in charge-unbalanced all-solid state electrochromic devices, Appl. Phys. Lett., 82, 3379, 10.1063/1.1575927

Lee, 1995, Electrochromic behavior of Ni–W oxide Electrodes, Sol. Energy Mater. Sol. Cells, 39, 155, 10.1016/0927-0248(95)00046-1

Mathew, 1997, Large area electrochromics for architectural applications, J. Non-Cryst. Solids, 218, 342, 10.1016/S0022-3093(97)00242-1

Azens, 1998, Sputter-deposited nickel oxide for electrochromic applications, Solid State Ionics, 113–115, 449, 10.1016/S0167-2738(98)00309-9

Lechner, 1998, All solid-state electrochromic devices on glass and polymeric foils, Sol. Energy Mater. Sol. Cells, 54, 139, 10.1016/S0927-0248(98)00064-6

Nagai, 1999, Durability of electrochromic glazing, Sol. Energy Mater. Sol. Cells, 56, 309, 10.1016/S0927-0248(98)00140-8

Karlsson, 2000, Angle-resolved optical characterization of an electrochromic device, Sol. Energy, 68, 493, 10.1016/S0038-092X(00)00021-9

Person, 2003, Degradation of a solid-state electrochromic device, Solid State Ionics, 165, 73, 10.1016/j.ssi.2003.08.015

Jonsson, 2004, Isothermal transient ionic current study of laminated electrochromic devices for smart window applications, Sol. Energy Mater. Sol. Cells, 84, 361, 10.1016/j.solmat.2004.01.042

Jonsson, 2005, H+ conduction in solid-state electrochromic devices analyzed by transient current measurements, J. Electrochem. Soc., 152, A377, 10.1149/1.1849775

Larsson, 2004, Optical properties of electrochromic all-solid-state devices, Sol. Energy Mater. Sol. Cells, 84, 351, 10.1016/j.solmat.2004.02.051

Larsson, 2004, Infrared emittance of all-thin-film electrochromic devices, Mater. Lett., 58, 2517, 10.1016/j.matlet.2004.03.023

Subrahmanyam, 2007, A note on fast protonic solid state electrochromic device: NiOx/Ta2O5/WO3–x, Sol. Energy Mater. Sol. Cells, 91, 62, 10.1016/j.solmat.2006.07.003

Azens, 2003, Electrochromic materials and their applications in foil-based devices, Proc. Soc. Photo-Opt. Instrum. Eng., 5123, 185

Azens, 2003, Electrochromic devices on polyester foil, Solid State Ionics, 165, 1, 10.1016/j.ssi.2003.08.009

Azens, 2005, Flexible foils with electrochromic coatings: science, technology, and applications, Mater. Sci. Eng. B, 119, 214, 10.1016/j.mseb.2004.12.085

Beluze, 2006, Infrared electroactive materials and devices, J. Phys. Chem. Solids, 67, 1330, 10.1016/j.jpcs.2006.01.099

Azens, 2002, Electrochromism in Ir–Mg oxide films, Appl. Phys. Lett., 81, 928, 10.1063/1.1497189

Jin, 2006, Investigation on the broadening of band gap of wurtzite ZnO by Mg-doping, Acta Phys. Sinica, 55, 4809, 10.7498/aps.55.4809

Giri, 1984, Physical structure and the electrochromic effect in tungsten oxide films, Mater. Res. Soc. Symp. Proc., 24, 221, 10.1557/PROC-24-221

Azens, 2003, Ozone coloration of Ni oxide and Cr oxide Films, Sol. Energy Mater. Sol. Cells, 76, 147, 10.1016/S0927-0248(02)00213-1

Bardé, 2005, Ozonation: a unique route to prepare nickel oxyhydroxides: synthesis optimization and reaction mechanism study, Chem. Mater., 17, 470, 10.1021/cm040133+

Wixwat, 1990, An adhesive polymer electrolyte for electrochromic smart windows: optical and electrical properties of PMMA-PPG-LiClO4, 461

A. Azens, Private Communication, 2006.

Bell, 1999, Failure modes of sol–gel deposited electrochromic devices, Sol. Energy Mater. Sol. Cells, 56, 437, 10.1016/S0927-0248(98)00184-6

van Kampen, 1992

J. Smulko, A. Azens, L.B. Kish, C.G. Granqvist, Low-frequency current noise in electrochromic devices, Ionics, to be published.

Vandamme, 1994, Noise as diagnostic tool for quality, IEEE Trans. Electon. Devices, 41, 2176, 10.1109/16.333839

Gingl, 1996, Biased percolation and abrupt failure of electronic devices, Semicond. Sci. Technol., 11, 1770, 10.1088/0268-1242/11/12/002

Pennetta, 1999, Thermal effects on the electrical degradation of thin film resistors, Physica A, 266, 214, 10.1016/S0378-4371(98)00594-9

Kish, 2000, Noise in nanotechnology, Microelectron. Reliab., 40, 1833, 10.1016/S0026-2714(00)00063-9

Jones, 2001, The coherence of the gate and drain noise in stressed AlGaAs–InAlGaAs PHEMTs, Microelectron. Reliab., 41, 81, 10.1016/S0026-2714(00)00077-9

Bard, 2001

Baert, 2003, Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 114, 357, 10.1016/S0378-7753(02)00599-2

Kovacs, 1998

Iverson, 1968, Transient voltage changes produced in corroding metals and alloys, J. Electrochem. Soc., 115, 617, 10.1149/1.2411362

Hladky, 1982, The measurement of corrosion noise using electrochemical 1/f noise, Corrosion Sci., 22, 231, 10.1016/0010-938X(82)90107-X

Cottis, 2006, Sources of electrochemical noise in corroding systems, Elektrokhim., 42, 557

Smulko, 2006, Methods of electrochemical noise analysis for investigation of corrosion processes, Fluctuation Noise Lett., 6, R1, 10.1142/S0219477506003252

Smulko, 2006, Evaluation of reinforcement corrosion rate in concrete structures by electrochemical noise measurements, Elektrokhim., 42, 611

Buyan, 2006, Facial warming with tinted helmet visors, Int. J. Ind. Ergon., 36, 11, 10.1016/j.ergon.2005.06.005

Schütt, 2002, Electrochromic automotive sunroofs, 661

Kubo, 2003, Current state of the art for NOC-AGC electrochromic windows for architectural and automotive applications, Solid State Ionics, 165, 209, 10.1016/j.ssi.2003.08.043

Kubo, 2003, Performance and durability of electrochromic windows with carbon-based counter electrode and their application in the architectural and automotive fields, Solid State Ionics, 165, 97, 10.1016/j.ssi.2003.08.042

Syrrakou, 2005, Environmental assessment of electrochromic glazing production, Sol. Energy Mater. Sol. Cells, 85, 205, 10.1016/j.solmat.2004.03.005

Papaefthimiou, 2006, Energy performance assessment of an electrochromic window, Thin Solid Films, 502, 257, 10.1016/j.tsf.2005.07.294

Garg, 2005, An economic analysis of the deposition of electrochromic WO3 via sputtering or plasma enhanced chemical vapor deposition, Mater. Sci. Eng. B, 119, 224, 10.1016/j.mseb.2004.12.076

Bell, 2002, Modelling switching of electrochromic devices—a route to successful large area device design, Solid State Ionics, 152–153, 853, 10.1016/S0167-2738(02)00385-5

Krč, 2002, Three-state regulator for electrochromic windows, Sol. Energy Mater. Sol. Cells, 71, 387, 10.1016/S0927-0248(01)00096-4

Lee, 2002, Application issues for large-area electrochromic windows in commercial buildings, Sol. Energy Mater. Sol. Cells, 71, 465, 10.1016/S0927-0248(01)00101-5

Klems, 2001, Net energy performance measurements on electrochromic skylights, Energy Build., 33, 93, 10.1016/S0378-7788(00)00069-4

Bessière, 2002, Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control, J. Appl. Phys., 91, 1589, 10.1063/1.1430543

Bessière, 2003, Structural and electrochemical study of Li+ insertion in the infrared reflectance modulating compound LixWO3·H2O, Solid State Ionics, 165, 23, 10.1016/j.ssi.2003.08.011

Bessière, 2003, Control of powder microstructure for improved infrared reflectance modulation of an electrochromic plastic device, Chem. Mater., 15, 2577, 10.1021/cm021752q

Chandrasekhar, 2002, Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices, Adv. Funct. Mater., 12, 95, 10.1002/1616-3028(20020201)12:2<95::AID-ADFM95>3.0.CO;2-N

Chandrasekhar, 2003, Conducting polymer (CP) infrared electrochromics in spacecraft thermal control and military applications, Synth. Met., 135–136, 23, 10.1016/S0379-6779(02)00682-3

Dresselhaus, 2001

Gruner, 2006, Carbon nanotube films for transparent and plastic electronics, J. Mater. Chem., 16, 3533, 10.1039/b603821m

Armitage, 2004, Quasi-Langmuir–Blodgett thin film deposition of carbon nanotubes, J. Appl. Phys., 95, 3228, 10.1063/1.1646450

Kaempgen, 2005, Transparent carbon nanotube coatings, Appl. Surf. Sci., 252, 425, 10.1016/j.apsusc.2005.01.020

Zhou, 2006, A method of printing carbon nanotube thin films, Appl. Phys. Lett., 88, 123109, 10.1063/1.2187945

Boccaccino, 2006, Electrophoretic deposition of carbon nanotubes, Carbon, 44, 3149, 10.1016/j.carbon.2006.06.021

Kim, 2006, Characteristics of electrodeposited single-walled carbon nanotube films, J. Nanosci. Nanotechnol., 6, 3614, 10.1166/jnn.2006.067

Wang, 2006, Growth of single-walled carbon nanotubes on porous silicon, Appl. Surf. Sci., 252, 7347, 10.1016/j.apsusc.2005.08.067

Stadermann, 2004, Nanoscale study of conduction through carbon nanotube networks, Phys. Rev. B, 69, 201402, 10.1103/PhysRevB.69.201402

Goh, 2006, Some aspects of conduction in metallic single-wall carbon nanotubes, Curr. Appl. Phys., 6, 919, 10.1016/j.cap.2005.01.040

Kuroda, 2006, Joule heating induced negative differential resistance in freestanding metallic carbon nanotubes, Appl. Phys. Lett., 89, 103102, 10.1063/1.2345244

Aguirre, 2006, Carbon nanotube sheets as electrodes in organic light-emitting diodes, Appl. Phys. Lett., 88, 183104, 10.1063/1.2199461

Kaiser, 1998, Heterogeneous model for conduction in carbon nanotubes, Phys. Rev. B, 57, 1418, 10.1103/PhysRevB.57.1418

Ruzicka, 2000, Optical and DC conductivity study of potassium-doped single-walled carbon nanotube films, Phys. Rev. B, 61, R2468, 10.1103/PhysRevB.61.R2468

Hu, 2004, Percolation in transparent and conducting carbon nanotube networks, NanoLetters, 4, 2513, 10.1021/nl048435y

Bekyakova, 2005, Electronic properties of single-walled carbon nanotube networks, J. Am. Chem. Soc., 127, 5990, 10.1021/ja043153l

Trottier, 2005, Properties and characterization of carbon-nanotube-based transparent conductive coating, Proc. Soc. Inf. Display, 13, 759, 10.1889/1.2080514

Vavro, 2005, Metal–insulator transition in doped single-wall carbon nanotubes, Phys. Rev. B, 71, 155410, 10.1103/PhysRevB.71.155410

Behnam, 2006, Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions, Appl. Phys. Lett., 89, 093107, 10.1063/1.2339029

Fanchini, 2006, Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films, Appl. Phys. Lett., 88, 191919, 10.1063/1.2202703

Carroll, 2005, Polymer-nanotube composites for transparent, conducting thin films, Synth. Met., 155, 694, 10.1016/j.synthmet.2005.08.031

Moon, 2005, Transparent conductive film based on carbon nanotubes and PEDOT composites, Diamond Relat. Mater., 14, 1882, 10.1016/j.diamond.2005.07.015

Bocharova, 2006, Ultrathin transparent conductive film of polymer-modified multiwalled carbon nanotubes, J. Phys. Chem. B, 110, 14640, 10.1021/jp062458e

Dyke, 2004, Covalent functionalization of single-walled carbon nanotubes for materials applications, J. Phys. Chem. A, 108, 11151, 10.1021/jp046274g

Lu, 2005, Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes, Chem. Rev., 195, 3643, 10.1021/cr030093d

Lee, 2006, Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes, Phys. Rev. Lett., 97, 116801, 10.1103/PhysRevLett.97.116801

Hayashi, 2002, Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor, Nature, 419, 462, 10.1038/nature01053

Sushko, 2006, Role of hydrogen atoms in the photoinduced formation of stable electron centers in H-doped 12CaO·7Al2O3, Phys. Rev. B, 73, 045120, 10.1103/PhysRevB.73.045120

Toda, 2003, Thin film fabrication of nano-porous 12CaO·7Al2O3 crystal and its conversion into transparent conductive films by light illumination, Thin Solid Films, 445, 309, 10.1016/S0040-6090(03)01170-2

Sushko, 2003, Hopping and optical absorption of electrons in nano-porous crystal 12CaO·7Al2O3, Thin Solid Films, 445, 161, 10.1016/S0040-6090(03)01156-8

Sushko, 2003, Electron localization and a confined electron gas in nanoporous inorganic electrides, Phys. Rev. Lett., 91, 126401, 10.1103/PhysRevLett.91.126401

Sushko, 2006, Mechanisms of oxygen ion diffusion in a nanoporous complex oxide 12CaO·7Al2O3, Phys. Rev. B, 73, 014101, 10.1103/PhysRevB.73.014101

Harimoshi, 2004, Observation of Jonscher law in AC hopping conduction of the electron-doped nanoporous crystal 12CaO·7Al2O3 in the THz frequency range, Phys. Rev. B, 70, 193104, 10.1103/PhysRevB.70.193104

Medvedeva, 2004, Electronic structure and light-induced conductivity of a transparent refractory oxide, Phys. Rev. Lett., 93, 016408, 10.1103/PhysRevLett.93.016408

Hayashi, 2004, Effect of stability and diffusivity of extra-framework oxygen species on the formation of oxygen radicals in 12CaO·7Al2O3, Solid State Ionics, 173, 89, 10.1016/j.ssi.2004.07.057

Medvedeva, 2005, Combining high conductivity with complete optical transparency: a band structure approach, Europhys. Lett., 69, 583, 10.1209/epl/i2004-10386-y

Bertoni, 2005, Tunable conductivity and conduction mechanism in an ultraviolet activated electronic conductor, J. Appl. Phys., 97, 103713, 10.1063/1.1899246

Beltrán, 1997, Advanced optical daylighting systems: light shelves and light pipes, J. Illum. Eng. Soc., 26, 91, 10.1080/00994480.1997.10748194

Martins-Mogo, 2006, Evaluation of the daylight performance of advanced optical light pipes using an innovative experimental setup

V. Gligor, The luminous environment and office productivity, Tech. Lic. Thesis, Department of Electrical and Communication Engineering, Helsinki University of Technology, Espoo, Finland, 2004.

Heshong, 2002, Daylighting impacts on human performance in school, J. Illum. Eng. Soc., 31, 101, 10.1080/00994480.2002.10748396

Heshong, 2002, Daylighting impact on retail sales performance, J. Illum. Eng. Soc., 31, 21, 10.1080/00994480.2002.10748389

1999

2004

Kua, 2002, Demonstration intelligent building—a methodology for the promotion of total sustainability in the built environment, Build. Environ., 37, 231, 10.1016/S0360-1323(01)00002-6

De Rossi, 2005, Polymer-based interfaces as bioinspired “smart skins”, Adv. Colloid Interface Sci., 116, 165, 10.1016/j.cis.2005.05.002

Gorman, 2005

Schwartz-Schampera, 2002

A. Feltrin, A. Freundlich, Material challenges for terawatt level deployment of photovoltaics, in: Conference Record of the 2006 IEEE Fourth World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 2469–2472.

Kostoff, 2006, The structure and infrastructure of the global nanotechnology literature, J. Nanopart. Res., 8, 301, 10.1007/s11051-005-9035-8