Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit
Tóm tắt
The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
Tài liệu tham khảo
Abdu MA, Sastri JH, Luhr H, Tachihara H, Kitamura T, Trivedi NB, Sobral JHA (1988) DP 2 electric field fluctuations in the dusk-time dip equatorial ionosphere. Geophys Res Lett 25:9. doi:10.1029/98GL01096
Araki T (1977) Global structure of geomagnetic sudden commencements. Planet Space Sci 25:373–384
Araki T (1994) A physical model of the geomagnetic sudden commencement. Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophysical Monogr 81:183–200
Baker WG, Martyn DF (1953) Electric currents in the ionosphere I. The conductivity. Phil Trans R Soc London Ser A 246:281–294
Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686
Budden KG (1961) The wave-guide mode theory of wave propagation. Academic Press Inc, London, pp 33–34
Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47
Ebihara Y, Tanaka T, Kikuchi T (2014) Counter equatorial electrojet and overshielding after substorm onset: global MHD simulation study. J Geophys Res Space Physics 119:7281–7296. doi:10.1002/2014JA020065
Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial zonal electric fields. J Geophys Res 102(A11):24047–24056
Fejer BG, Jensen JW, Kikuchi T, Abdu MA, Chau JL (2007) Equatorial Ionospheric Electric Fields During the November 2004 Magnetic Storm. J Geophys Res 112:A10304. doi:10.1029/2007JA012376
Feldstein YI, Grafe A, Gromova LI, Popov VA (1997) Auroral electrojets during geomagnetic storms. J Geophys Res 102:14223–14235
Gonzales CA, Kelley MC, Fejer BG, Vickrey JF, Woodman RF (1979) Equatorial electric fields during magnetically disturbed conditions 2. Implications of simultaneous auroral and equatorial measurements. J Geophys Res 84:5803–5812
Hashimoto KK, Kikuchi T, Ebihara Y (2002) Response of the magnetospheric convection to sudden interplanetary magnetic field changes as deduced from the evolution of partial ring currents. J Geophys Res 107(A11):1337. doi:10.1029/2001JA009228
Hashimoto KK, Kikuchi T, Watari S, Abdu MA (2011) Polar-equatorial ionospheric currents driven by the region 2 field-aligned currents at the onset of substorms. J Geophys Res 116:A09217. doi:10.1029/2011JA016442
Hirono M (1952) A theory of diurnal magnetic variations in equatorial regions and conductivity of the ionosphere E region. J Geomag Geoelectr Kyoto 4:7–21
Huang C-S (2009) Eastward electric field enhancement and geomagnetic positive bay in the dayside low-latitude ionosphere caused by magnetospheric substorms during sawtooth events. Geophys Res Lett 36:L18102. doi:10.1029/2009GL040287
Huang C-S, Foster JC, Kelley MC (2005) Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res 110:A11309. doi:10.1029/2005JA011202
Iijima T, Potemra T (1976) The Amplitude Distribution of Field-Aligned Currents at Northern High Latitudes Observed by Triad. J Geophys Res 81:13. doi:10.1029/JA081i013p02165
Kamide Y, Sun W, Akasofu S-I (1996) The average ionospheric electrodynamics for the different substorm phases. J Geophys Res 101:A1. doi:10.1029/95JA02990
Kelley MC, Fejer BG, Gonzales CA (1979) An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301–304
Kikuchi T (1986) Evidence of transmission of polar electric fields to the low latitude at times of geomagnetic sudden commencements. J Geophys Res 91:3101–3105
Kikuchi T (2014) Transmission line model for the near-instantaneous transmission of the ionospheric electric field and currents to the equator. J Geophys Res Space Physics 119:1131–1156. doi:10.1002/2013JA019515
Kikuchi T, Araki T (1979) Horizontal transmission of the polar electric field to the equator. J Atmos Terr Phys 41:927–936
Kikuchi T, Lühr H, Kitamura T, Saka O, Schlegel K (1996) Direct penetration of the polar electric field to the equator during a DP2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J Geophys Res 101:17161–17173
Kikuchi T, Luehr H, Schlegel K, Tachihara H, Shinohara M, Kitamura T-I (2000) Penetration of auroral electric fields to the equator during a substorm. J Geophys Res 105:23251–23261
Kikuchi T, Hashimoto KK, Kitamura T-I, Tachihara H, Fejer B (2003) Equatorial counterelectrojets during substorms. J Geophys Res 108(A11):1406. doi:10.1029/2003JA009915
Kikuchi T, Hashimoto KK, Nozaki K (2008) Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J Geophys Res 113:A06214. doi:10.1029/2007JA012628
Matsushita S, Balsley BB (1972) A question of DP2 magnetic fluctuations. Planet Space Sci 20:1259–1267
McPherron RL (1970) Growth phase of magnetospheric substorms. J Geophys Res 75(28):5592–5599
Nishida A (1968) Coherence of geomagnetic DP2 magnetic fluctuations with interplanetary magnetic variations. J Geophys Res 73:5549–5559
Nishimura Y, Shinbori A, Ono T, Iizima M, Kumamoto A (2006) Storm-time electric field distribution in the inner magnetosphere. Geophys Res Lett 33:L22102. doi:10.1029/2006GL027510
Nishimura Y, Kikuchi T, Wygant J, Shinbori A, Ono T, Matsuoka A, Nagatsuma T, Brautigam D (2009) Response of convection electric fields in the magnetosphere to IMF orientation change. J Geophys Res 114:A09206. doi:10.1029/2009JA014277
Nishimura Y, Kikuchi T, Shinbori A, Wygant J, Tsuji Y, Hori T, Ono T, Fujita S, Tanaka T (2010) Direct measurements of the Poynting flux associated with convection electric fields in the magnetosphere. J Geophys Res 115:A12212. doi:10.1029/2010JA015491
Peymirat C, Richmond AD, Kobea AT (2000) Electrodynamic coupling of high and low latitudes: simulations of shielding/overshielding effects. J Geophys Res 105(A10):22991–23003
Rastogi RG (1977) Geomagnetic storms and electric fields in the equatorial ionosphere. Nature 268:422–424
Rastogi RG (2004) Westward electric field in the low latitude ionosphere during the main phase of magnetic storms occurring around local midday hours. Sci Lett 27:69–74
Senior C, Blanc M (1984) On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J Geophys Res 89:261–284
Shinbori A, Nishimura Y, Ono T, Iizima M, Kumamoto A, Oya H (2005) Electrodynamics in the duskside inner magnetosphere and plasma sphere during a super magnetic storm on March 13–15, 1989. Earth Planets Space 57:643–659
Somayajulu VV, Reddy CA, Viswanathan KS (1987) Penetration of magnetospheric convective electric field to the equatorial ionosphere during the substorm of March 22, 1979. Geophys Res Lett 14:876–879
Takahashi N, Y Kasaba, Shinbori A, Nishimura Y, Kikuchi T, Ebihara Y, Nagatsuma T (2015) Response of ionospheric electric fields at mid-low latitudes during sudden commencements. J Geophys Res Space Physics 120:4849–4862. doi:10.1002/2015JA021309
Tamao T (1964) The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J Geomag Geoelectr 48:89–114
Tanaka T (1995) Generation Mechanisms for Magnetosphere-Ionosphere Current Systems Deduced from a Three-Dimensional MHD Simulation of the Solar Wind-Magnetosphere-Ionosphere Coupling Processes. J Geophys Res 100:A7. doi:10.1029/95JA00419
Tanaka T, Nakamizo A, Yoshikawa A, Fujita S, Shinagawa H, Shimazu H, Kikuchi T, Hashimoto KK (2010) Substorm convection and current system deduced from the global simulation. J Geophys Res 115:A05220. doi:10.1029/2009JA014676
Tsunomura S (1999) Numerical analysis of global ionospheric current system including the effect of equatorial enhancement. Ann Geophysicae 17:692–706
Tsunomura S, Araki T (1984) Numerical analysis of equatorial enhancement of geomagnetic sudden commencement. Planet Space Sci 32:599–604
Vasyliunas VM (ed) (1972) The interrelationship of magnetospheric processes, Earth’s Magnetospheric Processes. BM McCormac, London, pp 29–38
Wei Y et al (2009) Westward ionospheric electric field perturbations on the dayside associated with substorm processes. J Geophys Res 114:A12209. doi:10.1029/2009JA014445
Wilson GR, Burke WJ, Maynard NC, Huang CY, Singer HJ (2001) Global electrodynamics observed during the initial and main phases of the July 1991 magnetic storm. J Geophys Res 106(A11):24517–24539
Wygant J, Rowland D, Singer HJ, Temerin M, Mozer F, Hudson MK (1998) Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J Geophys Res 103(A12):29527–29544. doi:10.1029/98JA01436