Translation of CircRNAs

Molecular Cell - Tập 66 Số 1 - Trang 9-21.e7 - 2017
Nagarjuna Reddy Pamudurti1, Osnat Bartok1, Marvin Jens2, Reut Ashwal-Fluss1, Christin Stottmeister2, Larissa Ruhe3, Mor Hanan1, Emanuel Wyler4, Daniel Pérez-Hernández5, Evelyn Ramberger5, Shlomo Shenzis1, Moshe Samson1, Gunnar Dittmar5, Markus Landthaler4, Marina Chekulaeva3, Nikolaus Rajewsky2, Sebastián Kadener1
1Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
3Non Coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
4RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
5Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe, 2015, Rolling circle translation of circular RNA in living human cells, Sci. Rep., 5, 16435, 10.1038/srep16435

Aitken, 2012, A mechanistic overview of translation initiation in eukaryotes, Nat. Struct. Mol. Biol., 19, 568, 10.1038/nsmb.2303

Anders, 2010, Differential expression analysis for sequence count data, Genome Biol., 11, R106, 10.1186/gb-2010-11-10-r106

Anders, 2015, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics., 31, 166, 10.1093/bioinformatics/btu638

Ashwal-Fluss, 2014, circRNA biogenesis competes with pre-mRNA splicing, Mol. Cell, 56, 55, 10.1016/j.molcel.2014.08.019

Aspden, 2014, Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq, eLife, 3, e03528, 10.7554/eLife.03528

Bar-Peled, 2014, Regulation of mTORC1 by amino acids, Trends Cell Biol., 24, 400, 10.1016/j.tcb.2014.03.003

Blanchette, 2004, Aligning multiple genomic sequences with the threaded blockset aligner, Genome Res., 14, 708, 10.1101/gr.1933104

Calviello, 2016, Detecting actively translated open reading frames in ribosome profiling data, Nat. Methods, 13, 165, 10.1038/nmeth.3688

Castagnetti, 2000, Control of oskar mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries, Development, 127, 1063, 10.1242/dev.127.5.1063

Chekulaeva, 2006, Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles, Cell, 124, 521, 10.1016/j.cell.2006.01.031

Chen, 1995, Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs, Science, 268, 415, 10.1126/science.7536344

de Klerk, 2015, Assessing the translational landscape of myogenic differentiation by ribosome profiling, Nucleic Acids Res., 43, 4408, 10.1093/nar/gkv281

Depner, 2014, Differential centrifugation-based biochemical fractionation of the Drosophila adult CNS, Nat. Protoc., 9, 2796, 10.1038/nprot.2014.192

Dunn, 2013, Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster, eLife, 2, e01179, 10.7554/eLife.01179

Edgar, 2004, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340

Fields, 2015, A regression-based analysis of ribosome-profiling data reveals a conserved complexity to mammalian translation, Mol. Cell, 60, 816, 10.1016/j.molcel.2015.11.013

Gebauer, 1999, Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5′ and 3′ UTRs of msl-2 mRNA is independent of the poly(A) tail, EMBO J., 18, 6146, 10.1093/emboj/18.21.6146

Glažar, 2014, circBase: a database for circular RNAs, RNA, 20, 1666, 10.1261/rna.043687.113

Guo, 2014, Expanded identification and characterization of mammalian circular RNAs, Genome Biol., 15, 409, 10.1186/s13059-014-0409-z

Hansen, 2013, Natural RNA circles function as efficient microRNA sponges, Nature, 495, 384, 10.1038/nature11993

Huang da, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc., 4, 44, 10.1038/nprot.2008.211

Huang, 2013, Translational profiling of clock cells reveals circadianly synchronized protein synthesis, PLoS Biol., 11, e1001703, 10.1371/journal.pbio.1001703

Ingolia, 2009, Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, 324, 218, 10.1126/science.1168978

Ito, 1997, The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells, Development, 124, 761, 10.1242/dev.124.4.761

Jackson, 2013, The current status of vertebrate cellular mRNA IRESs, Cold Spring Harb. Perspect. Biol., 5, a011569, 10.1101/cshperspect.a011569

Jeck, 2014, Detecting and characterizing circular RNAs, Nat. Biotechnol., 32, 453, 10.1038/nbt.2890

Ji, 2015, Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins, eLife, 4, e08890, 10.7554/eLife.08890

Kanashova, 2015, Differential proteomic analysis of mouse macrophages exposed to adsorbate-loaded heavy fuel oil derived combustion particles using an automated sample-preparation workflow, Anal. Bioanal. Chem., 407, 5965, 10.1007/s00216-015-8595-4

Karolchik, 2004, The UCSC Table Browser data retrieval tool, Nucleic Acids Res., 32, D493, 10.1093/nar/gkh103

Kent, 2002, The human genome browser at UCSC, Genome Res., 12, 996, 10.1101/gr.229102

Kim, 2013, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol., 14, R36, 10.1186/gb-2013-14-4-r36

Kronja, 2014, Widespread changes in the posttranscriptional landscape at the Drosophila oocyte-to-embryo transition, Cell Rep., 7, 1495, 10.1016/j.celrep.2014.05.002

Langmead, 2012, Fast gapped-read alignment with Bowtie 2, Nat Methods., 9, 357, 10.1038/nmeth.1923

Lareau, 2014, Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments, eLife, 3, e01257, 10.7554/eLife.01257

Lerner, 2015, Clk post-transcriptional control denoises circadian transcription both temporally and spatially, Nat. Commun., 6, 7056, 10.1038/ncomms8056

Li, 1999, A circularized sodium-calcium exchanger exon 2 transcript, J. Biol. Chem., 274, 8153, 10.1074/jbc.274.12.8153

Li, 2015, Exon-intron circular RNAs regulate transcription in the nucleus, Nat. Struct. Mol. Biol., 22, 256, 10.1038/nsmb.2959

Marr, 2007, IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback, Genes Dev., 21, 175, 10.1101/gad.1506407

Memczak, 2013, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, 495, 333, 10.1038/nature11928

Miettinen, 2015, Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3′ untranslated regions, Nucleic Acids Res., 43, 1019, 10.1093/nar/gku1310

Naganos, 2012, Mutations in the Drosophila insulin receptor substrate, CHICO, impair olfactory associative learning, Neurosci. Res., 73, 49, 10.1016/j.neures.2012.02.001

Olson, 2013, The insulin receptor cellular IRES confers resistance to eIF4A inhibition, eLife, 2, e00542, 10.7554/eLife.00542

Ori, 2015, Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats, Cell Syst., 1, 224, 10.1016/j.cels.2015.08.012

Puig, 2003, Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway, Genes Dev., 17, 2006, 10.1101/gad.1098703

Rappsilber, 2007, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protoc., 2, 1896, 10.1038/nprot.2007.261

Rybak-Wolf, 2015, Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed, Mol. Cell, 58, 870, 10.1016/j.molcel.2015.03.027

Sonenberg, 2009, Regulation of translation initiation in eukaryotes: mechanisms and biological targets, Cell, 136, 731, 10.1016/j.cell.2009.01.042

Starke, 2015, Exon circularization requires canonical splice signals, Cell Rep., 10, 103, 10.1016/j.celrep.2014.12.002

Suzuki, 2006, Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing, Nucleic Acids Res., 34, e63, 10.1093/nar/gkl151

Wang, 2015, Efficient backsplicing produces translatable circular mRNAs, RNA, 21, 172, 10.1261/rna.048272.114

Wang, 2014, Circular RNA is expressed across the eukaryotic tree of life, PLoS ONE, 9, e90859, 10.1371/journal.pone.0090859

Weingarten-Gabbay, 2016, Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes, Science, 351, 10.1126/science.aad4939

Weiss, 2014, Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster, PLoS Genet., 10, e1004252, 10.1371/journal.pgen.1004252

Westholm, 2014, Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation, Cell Rep., 9, 1966, 10.1016/j.celrep.2014.10.062