Transition to chaos in nonlinear dynamical systems described by ordinary differential equations

N. A. Magnitskii, S. V. Sidorov

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atoms. Sci., 20, 130–141 (1963).

N. A. Magnitskii and S. V. Sidorov, “A new view of the Lorenz attractor,” Different. Uravnen., 37, No. 11, 1494–1506 (2001).

P. Berge, Y. Pomeau, and C. Vidal, Order within Chaos [Russian translation], Merkurii Press, Moscow (2000), pp. 271, 272, 339–350.

N. A. Magnitskii and S. V. Sidorov, “Transition to chaos in the Lorenz system through a complete double homoclinic bifurcation cascade,” in: Nelineinaya Dinamika i Kontrol’, No. 2, Fizmatlit, Moscow (2002), pp. 169–184.

N. A. Magnitskii and S. V. Sidorov, “Transition to chaos in nonlinear dynamical systems through a subharmonic bifurcation cascade of two-dimensional tori,” Different. Uravnen., 38, No. 12, 1606–1610 (2002).

G. K. Vallis, “Conceptual models of El Nino/Southern oscillations,” J. Geophys. Res., 93, 13979–13991 (1988).

G. K. Vallis, “Chaotic dynamical system?” Science, 232, 243–245 (1986).

N. A. Magnitskii, S. V. Sidorov, and D. A. Kaloshin, “On some features of transition to chaos in a system of Lorenz equations,” in: Nelineinaya Dinamika i Upravlenie, No. 3, Fizmatlit, Moscow (2003), pp. 99–106.

S. V. Ershov, G. G. Malinetski, and A. A. Rusmaikin, “A generalized two-disk dynamo model,” Geophys. Astrophys. Fluid Dynamics, 47, 251–277 (1989).

O. E. Rossler, Phys. Lett., 57a, 397–398 (1976)

N. A. Magnitskii, “Hopf bifurcation in the Rossler system,” Different. Uravnen., 31, No. 3, 538–541 (1995).

M. D. Novikov and B. M. Pavlov, “A nonlinear model with complex dynamics,” Vestnik MGU, Vychisl. Matem. Kibern., No. 2, 3–7 (2000).

M. I. Rabinovich and A. L. Fabrikant, ZhETF, 77, 617–629 (1979).