Transition paths, diffusive processes, and preequilibria of protein folding

Zhuqing Zhang1, Hue Sun Chan1
1Departments of Biochemistry, Molecular Genetics, and Physics, University of Toronto, Toronto, ON, Canada M5S 1A8

Tóm tắt

Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.

Từ khóa


Tài liệu tham khảo

10.1038/230100a0

10.1073/pnas.68.11.2712

10.1063/1.1749604

10.1016/0076-6879(87)54092-7

10.1016/0022-2836(92)90561-W

10.1038/nsmb.1592

10.1016/j.sbi.2004.01.009

10.1016/S0076-6879(04)80016-8

10.1021/cr040425u

10.1146/annurev.biophys.37.092707.153558

10.1002/iub.223

10.3390/ijms10030889

10.1146/annurev-biophys-051309-103835

10.1146/annurev-physchem-032210-103405

10.1016/j.sbi.2012.01.010

10.1021/j100356a007

10.1063/1.471317

10.1103/PhysRevLett.76.4861

10.1073/pnas.0408098102

10.1073/pnas.0606506104

10.1073/pnas.0808600105

10.1073/pnas.0910390107

10.1016/j.ymeth.2010.04.016

10.1039/c1cp21541h

10.1021/jp212132v

10.1016/S0031-8914(40)90098-2

10.1073/pnas.0901178106

10.1126/science.1215768

10.1146/annurev.biophys.29.1.327

10.1063/1.3262489

10.1016/j.sbi.2007.12.003

10.1126/science.1187409

10.1126/science.1208351

10.1038/nature09021

10.1073/pnas.0909854107

10.1073/pnas.0905466106

10.1073/pnas.1003962107

10.1073/pnas.022387699

10.1016/j.jmb.2009.04.011

10.1073/pnas.0911844107

10.1073/pnas.0509768103

10.1088/1367-2630/7/1/034

10.1110/ps.9.3.452

10.1002/prot.21080

10.1103/RevModPhys.62.251

L Pontryagin, A Andronov, A Vitt, On the statistical treatment of dynamical systems. Zh Eksp Teor Fiz 3, 165–180 (1933).

10.1063/1.3278440

10.1063/1.3459058

10.1021/jp045544s

10.1016/j.jmb.2008.09.023

10.1021/jp076301d

10.1073/pnas.1005415107

10.1016/S0065-3233(00)53004-6

10.1021/bi802072u

10.1073/pnas.96.20.11311

10.1006/jmbi.1998.1645

10.1038/33808

10.1073/pnas.90.5.1942

10.1016/S0022-2836(03)00436-4

10.1073/pnas.0801874105

10.1073/pnas.0810218105

10.1073/pnas.1018983108

10.1073/pnas.1201811109

10.1126/science.7618079

10.1021/bi00013a042

10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO;2-R