Transition‐Metal‐Modified Polyaniline Nanofiber Counter Electrode for Dye‐Sensitized Solar Cells

ChemElectroChem - Tập 3 Số 11 - Trang 1922-1926 - 2016
Kezhong Wu1, Lei Chen1, Xiaolong Sun1, Mingxing Wu1
1College of Chemistry and Material Science, Key Laboratory of Inorganic Nanomaterials of Hebei Province, Hebei Normal University, No. 20 Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang City, Hebei Province, 050024 P. R. China

Tóm tắt

AbstractNovel polyaniline (PANI) nanofiber counter electrodes (CEs) modified with different transition metal ions were synthesized and showed remarkable catalytic activity for dye‐sensitized solar cells (DSSCs). The PANI nanofiber–transition metal ion electrodes were characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, current density–voltage curves, energy‐dispersive X‐ray spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization plots. The PANI CEs modified with Ni2+ and Co2+ exhibited low charge‐transfer and series resistances, which indicate high electrocatalytic activity toward the iodide redox shuttle. In contrast, the PANI CE modified with Mn2+ did not show much difference in its catalytic behavior, whereas the PANI—Cu2+ CE showed reduced electrochemical performance. The photovoltaic performances of the DSSCs based on the PANI–Ni2+ and PANI–Co2+ CEs were evaluated and they were found to exhibit power conversion efficiency of 4.70 and 4.57 %, higher than that of the pristine PANI‐CE‐based device (3.87 %). These easily fabricated PANI–metal composites with improved electrochemical activities are promising CEs for DSSCs to replace expensive Pt.

Từ khóa


Tài liệu tham khảo

10.1016/j.jssc.2016.03.025

10.1016/j.solener.2008.11.012

10.1039/C4CC01426J

10.1016/j.electacta.2014.10.075

10.1016/j.jpowsour.2015.11.012

10.1016/j.nanoen.2015.08.008

10.1016/j.electacta.2013.04.044

10.1016/j.cej.2013.02.052

10.1016/S1872-5805(13)60079-7

10.1016/j.nanoen.2013.10.012

10.1016/j.renene.2011.10.020

10.1016/j.jallcom.2015.03.233

10.1016/j.jphotochem.2015.03.015

10.1016/j.electacta.2013.05.149

10.1021/ja209657v

10.1039/c3cp44048f

Dou Y., 2012, Phys. Chem., 14, 1339

10.1016/j.jpowsour.2014.07.018

10.1016/j.electacta.2014.07.107

10.1016/j.orgel.2016.01.038

10.1016/j.mssp.2014.12.060

10.1016/j.synthmet.2013.04.009

10.1016/j.jphotochem.2012.07.002

10.1016/j.jpowsour.2008.11.075

10.1016/j.cej.2014.08.105

10.1016/j.electacta.2012.12.055

10.1016/j.jpowsour.2013.05.060

10.1016/j.electacta.2014.01.107

10.1016/j.jpowsour.2015.03.032

10.1016/j.synthmet.2003.10.003

10.1016/j.synthmet.2005.07.136

10.1016/j.electacta.2013.04.154

10.1016/j.synthmet.2015.07.026

10.1016/j.matlet.2015.10.053

10.1016/j.jpowsour.2015.11.028

10.1016/j.electacta.2015.01.224

10.1016/j.compositesb.2015.10.029

10.1016/j.jphotochem.2003.11.017

10.1016/j.electacta.2012.05.077

10.1002/celc.201402406

10.1002/celc.201300242

10.1016/j.matpr.2016.01.009

Theerthagiri J., 2016, J. Mater. Sci. Technol., 1

10.1016/j.jpowsour.2014.02.074

10.1016/j.nanoen.2014.02.003