Transient shear rheology of carbon nanofiber/polystyrene melt composites

Journal of Non-Newtonian Fluid Mechanics - Tập 165 - Trang 98-109 - 2010
Christopher Kagarise1, Jianhua Xu1, Yingru Wang2, Monon Mahboob2, Kurt W. Koelling1, Stephen E. Bechtel2
1Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH 43210, United States
2Department of Mechanical Engineering, The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210, United States

Tài liệu tham khảo

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Dyke, 2004, Covalent functionalization of single-walled carbon nanotubes for materials applications, J. Phys. Chem. A, 108, 11151, 10.1021/jp046274g Geng, 2002, Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes, Adv. Mater., 14, 1387, 10.1002/1521-4095(20021002)14:19<1387::AID-ADMA1387>3.0.CO;2-Q Biercuk, 2002, Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80, 2767, 10.1063/1.1469696 Choi, 2003, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing, J. Appl. Phys., 94, 6034, 10.1063/1.1616638 Du, 2006, An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity, Polym. Sci., Part B: Polym. Phys., 44, 1513, 10.1002/polb.20801 Yang, 2005, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites, Composites: Part A, 36, 691, 10.1016/j.compositesa.2004.07.009 Ramasubramaniam, 2003, Homogeneous carbon nanotube/polymer composites for electrical applications, Appl. Phys. Lett., 83, 2928, 10.1063/1.1616976 Meincke, 2004, Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer, 45, 739, 10.1016/j.polymer.2003.12.013 Jiang, 2005, Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization, Polymer, 46, 7418, 10.1016/j.polymer.2005.05.127 Lee, 2005, Polymer nanocomposite foams, Compos. Sci. Technol., 65, 2344, 10.1016/j.compscitech.2005.06.016 Baughman, 2002, Carbon nanotubes-the route toward applications, Science, 297, 787, 10.1126/science.1060928 Barrau, 2003, Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites, Macromolecules, 36, 9678, 10.1021/ma030399m Du, 2003, Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability, J, Polym. Sci., Part B: Polym. Phys., 41, 3333, 10.1002/polb.10701 Du, 2005, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys. Rev. B: Condens. Matter., 72, 10.1103/PhysRevB.72.121404 Haggenmueller, 2000, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett., 330, 219, 10.1016/S0009-2614(00)01013-7 Lantice, 2006, Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites, Carbon, 44, 3078, 10.1016/j.carbon.2006.05.008 Pötschke, 2005, Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning, Polymer, 46, 10355, 10.1016/j.polymer.2005.07.106 Tibbetts, 2007, A review of the fabrication and properties of vapor-grown carbonnanofiber/polymer composites, Compos. Sci. Technol., 67, 1709, 10.1016/j.compscitech.2006.06.015 Lozano, 2001, A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduction properties, J. Appl. Polym. Sci., 80, 1162, 10.1002/app.1200 Lozano, 2004, Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites, J. Appl. Polym. Sci., 93, 155, 10.1002/app.20443 Wang, 2006, Melt shear rheology of carbon nanofiber/polystyrene composites, Rheol. Acta, 45, 919, 10.1007/s00397-005-0077-8 Férec, 2009, Modeling fiber interactions in semiconcentrated fiber suspensions, J. Rheol., 53, 49, 10.1122/1.3000732 Tucker, 1994, 147 Solomon, 2001, Rheology of polypropylene/clay hybrid materials, Macromolecules, 34, 1864, 10.1021/ma001122e Larson, 1999 Sepher, 2004, Rheological properties of short fiber model suspensions, J. Rheol., 48, 1023, 10.1122/1.1773783 Sepehr, 2004, Rheological properties of short fiber filled polypropylene in transient shear flow, J. Non-Newtonian Fluid Mech., 123, 19, 10.1016/j.jnnfm.2004.06.005 Azaiez, 1996, Constitutive equations for fiber suspensions in viscoelastic media, J. Non-Newtonian Fluid Mech., 66, 35, 10.1016/0377-0257(96)01461-9 Bird, 1987 Tucker, 1991, Flow regimes for fiber suspensions in narrow gaps, J. Non-Newtonian Fluid Mech., 39, 239, 10.1016/0377-0257(91)80017-E Dinh, 1984, A rheological equation of state for semiconcentrated fiber suspensions, J. Rheol., 28, 207, 10.1122/1.549748 Shaqfeh, 1990, The hydrodynamic stress in a suspension of rods, Phys. Fluids A, 2, 7, 10.1063/1.857683 Advani, 1987, The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., 31, 751, 10.1122/1.549945 Advani, 1990, Closure approximations for three-dimensional structure tensors, J. Rheol., 34, 367, 10.1122/1.550133 Folgar, 1984, Orientation behavior of fibers in concentrated suspensions, J. Reinf. Plast. Compos., 3, 98, 10.1177/073168448400300201