Transient receptor potential ankyrin 1 contributes to the lysophosphatidylcholine-induced oxidative stress and cytotoxicity in OLN-93 oligodendrocyte

Cell Stress and Chaperones - Tập 25 Số 6 - Trang 955-968 - 2020
Chao Tian1, Shuai Li1, Lang He2, Xiaobo Han1, Feng Tang1, Rongqi Huang1, Zuoxian Lin1, Simin Deng3, Jiao Xu4, Haowen Huang5, Huifang Zhao5, Zhiyuan Li4
1Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
2Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
3Department of Anatomy and Neurobiology, School of Basic Medical Sciences; Central South University; Changsha Hunan China
4Guangzhou JYK Biotechnology Company Limited, Guangzhou, Guangdong, China
5Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andersson, 2008, Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress, J Neurosci, 28, 2485, 10.1523/JNEUROSCI.5369-07.2008

Angelova, 2018, Role of mitochondrial ROS in the brain: from physiology to neurodegeneration, FEBS Lett, 592, 692, 10.1002/1873-3468.12964

Askari, 2019, Promising neuroprotective effects of beta-caryophyllene against LPS-induced oligodendrocyte toxicity: a mechanistic study, Biochem Pharmacol, 159, 154, 10.1016/j.bcp.2018.12.001

Barnett, 2004, Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion, Ann Neurol, 55, 458, 10.1002/ana.20016

Bolcskei, 2018, Behavioural alterations and morphological changes are attenuated by the lack of TRPA1 receptors in the cuprizone-induced demyelination model in mice, J Neuroimmunol, 320, 1, 10.1016/j.jneuroim.2018.03.020

Brand, 2010, Membrane lipid modification by polyunsaturated fatty acids sensitizes oligodendroglial OLN-93 cells against oxidative stress and promotes up-regulation of heme oxygenase-1 (HSP32), J Neurochem, 113, 465, 10.1111/j.1471-4159.2010.06611.x

Campos-Mota, 2017, Role of ERK1/2 activation and nNOS uncoupling on endothelial dysfunction induced by lysophosphatidylcholine, Atherosclerosis, 258, 108, 10.1016/j.atherosclerosis.2016.11.022

Compston, 2008, Multiple sclerosis, Lancet, 372, 1502, 10.1016/S0140-6736(08)61620-7

Cossarizza, 1993, A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1), Biochem Biophys Res Commun, 197, 40, 10.1006/bbrc.1993.2438

Doihara, 2009, QGP-1 cells release 5-HT via TRPA1 activation: a model of human enterochromaffin cells, Mol Cell Biochem, 331, 239, 10.1007/s11010-009-0165-7

Fetisova, 2017, Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis, Curr Med Chem, 24, 2086, 10.2174/0929867324666170316114452

Freeman, 2017, NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes, J Exp Med, 214, 1351, 10.1084/jem.20150237

Fressinaud C, Vallat JM, Pouplard-Barthelaix A (1996) Platelet-derived growth factor partly prevents chemically induced oligodendrocyte death and improves myelin-like membranes repair in vitro. Glia 16:40–50. https://doi.org/10.1002/(sici)1098-1136(199601)16:1%3C40::aid-glia5%3E3.0.co;2-f

Gerstner, 2006, Maturation-dependent oligodendrocyte apoptosis caused by hyperoxia, J Neurosci Res, 84, 306, 10.1002/jnr.20880

Ghasemi, 2018, Nitric Oxide and mitochondrial function in neurological diseases, Neuroscience, 376, 48, 10.1016/j.neuroscience.2018.02.017

Guzik, 2003, Nitric oxide and superoxide in inflammation and immune regulation, J Physiol Pharmacol, 54, 469

Hamilton, 2016, Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia, Nature, 529, 523, 10.1038/nature16519

Ignarro, 1999, Nitric oxide: a unique endogenous signaling molecule in vascular biology, Biosci Rep, 19, 51, 10.1023/A:1020150124721

Islam, 2017, Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders, Neurol Res, 39, 73, 10.1080/01616412.2016.1251711

Jarjour, 2012, In vitro modeling of central nervous system myelination and remyelination, Glia, 60, 1, 10.1002/glia.21231

Jeong, 2017, TRPM2 contributes to LPC-induced intracellular Ca2+ influx and microglial activation, Biochem Biophys Res Commun, 485, 301, 10.1016/j.bbrc.2017.02.087

Kalyvas, 2009, Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis, Brain, 132, 1221, 10.1093/brain/awp002

Kougias, 2006, Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: mediators of endothelial dysfunction and atherosclerosis, Med Sci Monit, 12, Ra5

Lehnardt, 2002, The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS, J Neurosci, 22, 2478, 10.1523/JNEUROSCI.22-07-02478.2002

Li, 2017, TRP channel classification, Adv Exp Med Biol, 976, 1, 10.1007/978-94-024-1088-4_1

Li, 2016, Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation, Arterioscler Thromb Vasc Biol, 36, 1090, 10.1161/ATVBAHA.115.306964

Liu, 2018, proBDNF inhibits the proliferation and migration of OLN93 oligodendrocytes, Mol Med Rep, 18, 3809

McKenzie, 2018, Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis, Proc Natl Acad Sci U S A, 115, E6065, 10.1073/pnas.1722041115

McNamara, 2007, TRPA1 mediates formalin-induced pain, Proc Natl Acad Sci U S A, 104, 13525, 10.1073/pnas.0705924104

Mihai, 2019, Computational Drug repurposing algorithm targeting TRPA1 calcium channel as a potential therapeutic solution for multiple sclerosis, Pharmaceutics, 11, 446, 10.3390/pharmaceutics11090446

Monet, 2009, Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation, Biochim Biophys Acta, 1793, 528, 10.1016/j.bbamcr.2009.01.003

Murakami, 2004, G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine, J Biol Chem, 279, 42484, 10.1074/jbc.M406561200

Nadjafi, 2015, Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: calcium and nitric oxide involvement, Acta Physiol Hung, 102, 351, 10.1556/036.102.2015.4.2

Pieragostino, 2015, An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis, Mol BioSyst, 11, 1563, 10.1039/C4MB00700J

Plemel, 2018, Mechanisms of lysophosphatidylcholine-induced demyelination: a primary lipid disrupting myelinopathy, Glia, 66, 327, 10.1002/glia.23245

Saghy, 2016, TRPA1 deficiency is protective in cuprizone-induced demyelination—a new target against oligodendrocyte apoptosis, Glia, 64, 2166, 10.1002/glia.23051

Schilling, 2009, Non-selective cation channel activity is required for lysophosphatidylcholine-induced monocyte migration, J Cell Physiol, 221, 325, 10.1002/jcp.21857

Shi, 2017, Pyroptosis: gasdermin-mediated programmed necrotic cell death, Trends Biochem Sci, 42, 245, 10.1016/j.tibs.2016.10.004

Silva, 2018, Beneficial effects of the calcium channel blocker CTK 01512-2 in a mouse model of multiple sclerosis, Mol Neurobiol, 55, 9307, 10.1007/s12035-018-1049-1

Sinharoy, 2015, Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCepsilon, Pharmacol Res Perspect, 3, e00153, 10.1002/prp2.153

Soga, 2005, Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor, Biochem Biophys Res Commun, 326, 744, 10.1016/j.bbrc.2004.11.120

Strassmaier, 2011, Transient receptor potential A1 modulators, Curr Top Med Chem, 11, 2227, 10.2174/156802611796904915

Tian, 2020, Transient receptor potential ankyrin 1 contributes to lysophosphatidylcholine-induced intracellular calcium regulation and THP-1-derived macrophage activation, J Membr Biol, 253, 43, 10.1007/s00232-019-00104-2

Trapp, 2008, Multiple sclerosis: an immune or neurodegenerative disorder?, Annu Rev Neurosci, 31, 247, 10.1146/annurev.neuro.30.051606.094313

Wang, 2013, Lysophosphatidylcholine causes neuropathic pain via the increase of neuronal nitric oxide synthase in the dorsal root ganglion and cuneate nucleus, Pharmacol Biochem Behav, 106, 47, 10.1016/j.pbb.2013.03.002

Yao, 2010, LPS mediated injury to oligodendrocytes is mediated by the activation of nNOS: relevance to human demyelinating disease, Nitric Oxide, 22, 197, 10.1016/j.niox.2009.12.001

Yao, 2012, nNOS mediated mitochondrial injury in LPS stimulated oligodendrocytes, Mitochondrion, 12, 336, 10.1016/j.mito.2012.01.002