Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae)

Springer Science and Business Media LLC - Tập 90 - Trang 319-330 - 2016
I. Garrido-Jurado1, G. Resquín-Romero1,2, S. P. Amarilla3, A. Ríos-Moreno1, L. Carrasco3, E. Quesada-Moraga1
1Department of Agricultural and Forestry Sciences, ETSIAM, University of Cordoba, Cordoba, Spain
2Faculty of Agrarian Sciences of the National University of Asunción, Asunción, Paraguay
3Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Campus Universitario de Rabanales, Cordoba, Spain

Tóm tắt

Three Beauveria bassiana and two Metarhizium brunneum strains, two of which GFP-transformed, were evaluated for virulence against fourth-instar nymphs of the sweet potato whitefly Bemisia tabaci (B. tabaci nymphs, BTN), with the following results. (1) Immersion of infested melon leaves in suspensions ranging from 105 to 108 conidia ml−1 yielded an LC50 ranging between 3.4 × 104 and 2.2 × 107 conidia ml−1. (2) Temporal colonization of the leaf tissues infested with BTN 96 h after inoculation was observed in both sprayed leaves (SL) (ranging between 98.0 and 40.0 %) and leaves of the same plant that were not directly exposed to the fungal treatment [i.e., leaves that were not sprayed (LNS)] (62.0–12.0 %). Total nymphal mortality ranged between 83.9 and 100.0 % and between 66.3 and 87.9 % in SL and LNS, respectively. Interestingly, from 0 to 16 % nymph cadavers from LNS showed fungal outgrowth. (3) The adaxial surfaces of infested melon leaves were brushed with 108 conidia ml−1 suspensions to ascertain the translaminar fate of the fungi in the leaves that resulted in nymphal mortality, which ranged from 53.4 to 96.0 %. As before, mortality with fungal outgrowth was detected only in the B. bassiana treatments as a result of the different leaf colonization patterns of the two fungal species revealed by histological examination. Destruxin A was present in 43.0 % of the melanized nymphs on the leaves treated on their adaxial surfaces with the M. brunneum isolate. The effect of transiently colonized leaves must be considered to estimate the true acute impact of field sprays containing entomopathogenic fungi on B. tabaci and other sucking insect pests.

Tài liệu tham khảo

Akello J, Sikora R (2012) Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol Control 61:215–221. doi:10.1016/j.biocontrol.2012.02.007 Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398. doi:10.2307/3761880 Bateman R, Chapple A (2001) The spray application of mycopesticide formulations. In: Butt TM, Jackson T, Magan N (eds) Fungal biocontrol agents—progress, problems and potential. CABI Press, Wallingford, pp 289–309 Behie SW, Jones SJ, Bidochka MJ (2015) Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol 13:112–119. doi:10.1016/j.funeco.2014.08.001 Carpio A, Arroyo-Manzanares N, Rios-Moreno A, Garrido-Jurado I, Gamiz-Gracia L, Garcia-Campana AM, Quesada-Moraga E, Arce L (2016) Development of a QuEChERS-based extraction method for the determination of destruxins in potato plants by UHPLC-MS/MS. Talanta 146:815–822. doi:10.1016/j.talanta.2015.06.008 Castillo Lopez D, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9(8):e103891. doi:10.1371/journal.pone.0103891 Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y (2004) Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol 85:18–24 Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge Garrido-Jurado I, Alkhaibari A, Williams SR, Oatley-Radcliffe DL, Quesada-Moraga E, Butt TM (2015) Toxicity testing of Metarhizium conidia and toxins against aquatic invertebrates. J Pest Sci 84:1–8. doi:10.1007/s10340-015-0700-0 Gryganskyi AP, Humber RA, Smith ME, Miadlikovska J, Wu S, Voigt K, Walther G, Anishchenkof IM, Vilgalys R (2012) Molecular phylogeny of the entomophthoromycota. Mol Phylogenet Evol 65:682–694. doi:10.1016/j.ympev.2012.07.026 Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41. doi:10.1016/j.biocontrol.2010.06.011 Hibbett DS, Binder M, Bischoff JF, Blackwell M et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547. doi:10.1016/j.mycres.2007.03.004 Hoagland DR, Arnon DI (1950) The water: culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32 Hu G, Leger RJ (2002) Field studies using recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387 Humber RA (2012) Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi. Mycotaxon 120:477–492. doi:10.5248/120.477 IBM Corp. Released (2010) IBM SPSS statistic for windows, version 19.0. IBM Corp, Amonk, NY Jandricic SE, Filotas M, Sanderson JP, Wraight SP (2014) Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae). J Invertebr Pathol 118:34–46. doi:10.1016/j.jip.2014.02.003 Landa BB, Lopez-Diaz C, Jimenez-Fernandez D, Montes-Borrego M, Munoz-Ledesma FJ, Ortiz-Urquiza A, Quesada-Moraga E (2013) In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J Invertebr Pathol 114:128–138. doi:10.1016/j.jip.2013.06.007 Mercado-Blanco J, Lugtenberg B (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75 Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270. doi:10.1016/j.jip.2008.01.010 Quesada-Moraga E, Maranhao EAA, Valverde-Garcia P, Santiago-Alvarez C (2006) Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biol Control 36:274–287. doi:10.1016/j.biocontrol.2005.09.022 Quesada-Moraga E, Herrero N, Zabalgogeazcoa I (2014a) Entomopathogenic and Nematophagous fungal endophytes. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 85–99 Quesada-Moraga E, Lopez-Diaz C, Beatriz Landa B (2014b) The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PLoS One 9(2):e89278. doi:10.1371/journal.pone.0089278 Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Heidelberg, pp 309–317 Skrobek A, Shah FA, Butt TM (2008) Destruxin production by the entomogenous fungus Metarhizium anisopliae in insects and factors influencing their degradation. Biocontrol 53:361–373. doi:10.1007/s10526-007-9077-1 Statistix (2009) Statistix 9: analytical software. Tallahassee. Tseng MN, Chung CL, Tzean SS (2014) Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. PLoS One 9(3):e90473. doi:10.1371/journal.pone.0090473 Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279. doi:10.1016/j.jip.2008.01.008 Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82. doi:10.1016/j.biocontrol.2008.01.008 Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159. doi:10.1016/j.funeco.2009.05.001 Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 109:46–54 Zhang C-R, Zhang S, Xia J, Li F-F, Xia W-Q, Liu S-S, Wang X-W (2014) The immune strategy and stress response of the Mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen. PLoS One 9(4):e94477. doi:10.1371/journal.pone.0094477