Các dòng khoai tây chuyển gen biểu hiện EZP4-CP4 synthase cho thấy khả năng kháng glyphosate

Plant Cell, Tissue and Organ Culture - Tập 140 - Trang 23-34 - 2019
Allah Bakhsh1, Tahira Hussain1, Ilhom Rahamkulov1, Ufuk Demirel1, Mehmet Emin Çalışkan1
1Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey

Tóm tắt

Các cây khoai tây đặc biệt dễ bị tổn thương trước sự cạnh tranh của cỏ dại từ giai đoạn nảy mầm đến khi phát triển tối đa, dẫn đến mất mùa đáng kể. Glyphosate là loại thuốc diệt cỏ phổ rộng được sử dụng để kiểm soát cỏ dại trên toàn thế giới. Để đưa vào đặc tính kháng glyphosate trong bốn giống khoai tây (Lady Olympia, Desiree, Agria và Granola), một phương pháp biến đổi gen hiệu quả, tiết kiệm chi phí, có khả năng tái tạo và ổn định đã được thực hiện bằng cách sử dụng các mẫu lá và đốt thân. Chủng Agrobacterium LBA4404 mang vector nhị phân tái tổ hợp pCAMHE-EPSPS mới được sửa đổi chứa gen EPSP synthase dưới sự điều khiển của trình khởi động virus cải Brussels 35S đã được sử dụng để nhiễm mẫu. Hiệu suất biến đổi tổng thể đạt 26,4%. Trong số 280 cây được chuyển tới nhà kính, 74 cây được xác nhận dương tính bằng PCR với gen quan tâm. Các thử nghiệm GUS histochemical, Southern blot, RT-qPCR, xét nghiệm dipstick dòng chảy bên đã xác nhận sự tích hợp và biểu hiện của EPSPS trong các dòng chuyển biến đầu tiên. Các cây transgenic giả định từ các giống này có khả năng kháng tốt hơn với ứng dụng glyphosate trong T0 và thế hệ củ thứ nhất. Các dòng khoai tây transgenic này có thể được sử dụng làm nguồn giống cho một chương trình giống khoai tây hiệu quả. Bài báo báo cáo về sự phát triển của các dòng khoai tây chuyển gen với khả năng chịu đựng cao hơn với glyphosate.

Từ khóa

#glyphosate #khoai tây #chuyển gen #EPSPS #Agrobacterium #thuốc diệt cỏ #giống cây trồng #kháng thuốc diệt cỏ

Tài liệu tham khảo

Aldemita RR, Reaño IM, Solis RO, Hautea RA (2015) Trends in global approvals of biotech crops (1992–2014). GM Crops Food 6:150–166 Americanos P (1994) Weed management in potatoes, weed management for developing Countries. In: Caseley RJ, Parker C (eds) Labrada. FAO, Rome, pp 295–300 Amiri AN, Bakhsh A (2019) An effective pest management approach in potato to combat insect pests and herbicide. 3 Biotech 9:16. https://doi.org/10.1007/s13205-018-1536-0 Anayol E, Bakhsh A, Karakoç ÖC, Onarıcı S, Köm D, Aasim M, Özcan SF, Barpete S, Khabbazi SD, Önol B, Sancak C (2016) Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10:83–94 Bagri DS, Upadhyay DC, Jain SK, Upadhyay CP (2018) Biotechnological improvement of nutritional and therapeutic value of cultivated potato. Front Biosci 10:217–228 Bakhsh A, Siddiq S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74 Bakhsh A, Baloch FS, Hatipöğlu R, Ozkan H (2015) Use of genetic engineering, benefits and health concerns. In: Hui YH, Özgül Evranuz E (eds) Handbook of Vegetable Preservation and Processing, 2nd edn. CRC Press, Boca Raton, pp 81–112 Banerjee AK, Prat S, Hannapel DJ (2006) Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 170:732–738 Beaujean A, Sangwan R, Lecardonnel A, Sangwan-Norreel B (1998) Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants, an efficient protocol of transformation. J Exp Bot 49:1589–1595 Brookes G, Barfoot P (2011) Global impact of biotech crops, environmental effects 1996–2008. AgBioforum 13(1):76–94. http://www.agbioforum.org Brookes G, Barfoot P (2014) Economic impact of GM crops: the global income and production effects 1996-2012. GM Crops 5:1–11. https://doi.org/10.4161/gmcr.28098 Brown TA (2001) Southern blotting and related DNA detection techniques/encyclopedia of life sciences. Wiley, Chichester Colquhoun JB, Konieczka CM, Rittmeyer RA (2009) Ability of potato cultivars to tolerate and suppress weeds. Weed Technol 23:287–291 Conley SP, Binning LK, Connell TR (2001) Effect of cultivar, row spacing, and weed management on weed biomass, potato yield, and net crop value. Am J Potato Res 78:31–37 Dale PJ, Hampson KK (1995) An assessment of morphogenic and transformation efficiency in a range of varieties of potato (Solanum tuberosum L.). Euphytica 85:101–108 De Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:767–774 Dill G (2005) Glyphosate resistant crops: history, status and future. Pest Manag Sci 61:219–224 Ducreux LMJ, Morris WL, Taylor MA, Millam S (2005) Agrobacterium mediated transformation of Solanum phureja. Plant Cell Rep 24:10–14 FAOSTAT data (2017) http://www.fao.org/home/en/ Accessed on 30 July, 2018 Felix J, Ivany J, Kegode GO, Doohan D (2008) Timing potato cultivation using weedcast model. Weed Sci. https://doi.org/10.1614/WS-08-019.1 Figueira E, Figueiredo L, MonteNeshich D (1994) Transformation of potato (Solanum tuberosum) cv. Mantiqueira using Agrobacterium tumefaciens and evaluation of herbicide resistance. Plant Cell Rep 3:666–670 Göre ME (2017) Fungal seed borne pathogens infecting potato seed tubers from Turkey 2011–2014. J Plant Dis Protect 124:539–551 Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:1323–1331 Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117 Halterman D, Guenthner J, Collinge S, Butler N, Douches D (2016) Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato 93:1–20 Hussain T, Aksoy E, Caliskan ME, Bakhsh A (2019) Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res 28:1–14. https://doi.org/10.1007/s11248-018-0109-7 Imran M, Asad S, Barboza AL, Galeano E, Carrer H, Mukhtar Z (2017) Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide. Physiol Mol Biol Plants 23:453–460 ISAAA (2016) Global status of commercialized Biotech/GM crops. ISAAA Brief No. 52. ISAAA:Ithaca, NY ISAAA (2019) Potato (Solanum tubersom L.). GM events. http://www.isaaa.org/gmapprovaldatabase/advsearch/default.asp?CropID=16&TraitTypeID=1&DeveloperID=22&CountryID=US&ApprovalTypeID=Any. Accessed 7 Jan 2017 James C (2013) Global status of commercialized biotech/GM crops. ISAAA Brief No. 46 ISAAA, Ithaca, NY Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against lepidopteran pest (Helicoverpa armigera). Span J Agric Res 9:296–300 Kumar A (1995) Agrobacterium-mediated transformation of potato genotypes. In: Gartland KMA, Davey MR (eds) Methods in molecular biology, Agrobacterium protocols, 44. Humana Press, Totowa, pp 121–128 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2ΔΔC(T) method. Methods 25:402–408 Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog 26:21–25 Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497 Nain V, Jaiswal R, Dalal M, Ramesh B, Kumar A (2005) Polymerase chain reaction analysis of transgenic plants contaminated by Agrobacterium. Plant Mol Biol Rep 23:59–65 Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88 Nicot N, Hausman JF, Hoffman L, Evers D (2005) Housekeeping gene selection for real time PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914 Oxtoby E, Hughes MA (1990) Engineering herbicide tolerance into crops. Trends Biotechnol 8:61–65 Padegimas L, Shulga OA, Skryabin KG (1994) Herbicide phosphinothricin tolerance in transgenic plants Nicotiana tabacum and Solanum tuberosum. Mol Biol 28:437–443 Peixoto FP, Gomes-Laranjo J, Vicente JA, Madeira VMC (2008) Comparative effects of the herbicides dicamba, 2,4-D and paraquat on non-green potato tuber calli. J Plant Physiol 165:1125–1133 Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats A literature survey. Anal Bioanal Chem 393(2):569–582 Rao CK (2005) Transgenic Bt technology 3, expression of transgenes. http://www.fbae.org/2009/FBAE/website/special-topics_views_transgenic_bt_technology3.html Rao AQ, Bakhsh A, Nasir IA, Riazuddin S, Husnain T (2011) Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr J Biotechnol 10:1818–1826 Sahoo KK, Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7:49 Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Soto N, Enriquez GA, Ferreira A, Corrada M, Fuentes A, Tiel K, Pujol M (2007) Efficient trans-formation of potato stem segments from cv. Desiree using phosphinothricin as selection marker. Biotechnol Applicada 24:139–144 Southern EM (1975) Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 Tripathi B, Singh CM, Bhargava M (1989) Comparative efficacy of herbicides in potato under conditions of north-western Himalayas. Pesticides 23:37–38 Üremiş İ, Caliskan ME, Uludağ A, Caliskan S (2009) Weed management in early-season potato production in the Mediterranean conditions of Turkey. Bulg J Agric Sci 15:423–434 Veale MA, Slabbert MM, Van Emmenes L (2012) Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). S Afr J Bot 80:67–74 Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12:34 Yang LT, Ding JY, Zhang CM, Jia JW, Weng HB, Liu WX, Zhang DB (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763 Zimdahl RL (2007) Fundamental of weed science, 3rd edn. Academic Press, New York, p 325