Transgenic maize plants expressing a fungal phytase gene

Transgenic Research - Tập 17 Số 4 - Trang 633-643 - 2008
Rumei Chen1, Guangxing Xue2, Ping Chen2, Bin Yao2, Wenzhu Yang2, Qianli Ma2, Yunliu Fan2, Zuo‐Yu Zhao3, Mitchell C. Tarczynski3, Jinrui Shi3
1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
2Chinese Academy of Agricultural Sciences
3Pioneer Hi-Bred International, A DuPont Company

Tóm tắt

Từ khóa


Tài liệu tham khảo

An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3’ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122

Armstrong CL, Green CE, Philips RL (1991) Development and availability of germplasm with high type II culture formation response. Maize Genet Coop News Lett 65:92–93

Asada K, Tanaka K, Kasai Z (1969) Formation of phytic acid in cereal grains. Ann NY Acad Sci 165:801–814

Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ (1994) An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. In: Bajpai RK, Prokop A (eds) Recombinant DNA Technology II. New York Academy of Sciences, New York, pp 234–244

Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

Brinch-Pedersen H, Sorensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

Coello P, Maughan JP, Mendoza A, Philip R, Bollinger DW, Veum TL, Vodkin LO, Polacco JC (2001) Generation of low phytic acid Arabidopsis seeds expressing an E. coli phytase during embryo development. Seed Sci Res 11:285–291

Cosgrove DJ (1966) The chemistry and biochemistry of inositol polyphosphates. Rev Pure Appl Chem 16:209–215

Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci 77(6):878–881

Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fisher R, Christou P, Stoger E (2005) Endosperm specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

Gibson DM, Ullah AH (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys 260:503–513

Greiner R, Konietzny U, Jany K (1993) Purification and characterisation of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39

Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140

Joanin P, Gigot C, Philipps G (1992) Nucleotide sequence and expression of two cDNA coding for two histone H2B variants of maize. Plant Mol Biol 20:581–588

Jongbloed AW, Kemme PA, Mroz Z (1996) Phytase in swine rations: impact on nutrition and environment. In: BASF Technical Symposium. January 29, 1996, Des Moines, IA, BASF, Mount Olive, NJ, pp 44–69

Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28:1313–1315

Lei XG, Ku PK, Miller ER, Yokoyama MT, Ullrey DE (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J Anim Sci 72:139–143

Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481

Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow MD, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111

Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

Mitchell DB, Vogel K, Weimann B, Pasamontes L, van Loon APGM (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252

Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

Pen J, Verwoerd TC, van Paridin PA, Beukeder RF, van der Elzen PJM, Geerse K et al (1993) Phytase-containing transgenic seed as a novel feed additive for improved phosphorus utilization. Bio/Technol 11:811–814

Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF et al (2002) Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 10:31–44

Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult Avain Bio Rev 6:125–143

Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv Food Res 28:1–92

Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

Schroder B, Breves G, Rodehutscord M (1996) Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Dtsch Tierarztl Wochenschr 103:209–214

Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EE, Howard JA (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815

Tomes DT (1995) Direct DNA transfer into plant cell via microprojectile bombardment. In: Gamborg OL, Philipps GC (eds) Plant cell tissue and organ culture: fundamental methods. Springer-Verlag Publisher, Berlin, pp 197–213

Ullah AH (1988) Aspergillus ficuum phytase: partial primary structure, substrate selective, and kinetic characterization. Prep Biochem 18:459–461

Ullah AH, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Commun 264:201–206

Ullah AH, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophys Res Commun 290:1343–1348

Urbano G, Lopez-Jurado M, Aranda P, Vidal-Valverde C, Tenorio E, Porres J (2000) The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 56:283–294

Vaintraub IA, Lapteva NA (1988) Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal Biochem 175:227–230

Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson DG, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, De Jaeger G (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci USA 104:1430–1435

Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23(1):29–60

Wodzinski RJ, Ullah AHJ (1996) Phytases. Adv Appl Microbiol 42:263–302

Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, van Loon AP (1999a) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65(2):359–366

Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, Kusznir E, Wahl G, Muller F, Lahm HW, Vogel K, van Loon AP (1999b) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

Yao B, Yuan TZ, Wang YH. Cao SS, Wang YR, Shi XY, Fan YL (2001) Cloning of neutral phytase gene nphy from Bacillus subtilis and its expression in Escherichia coli. Sheng Wu Gong Cheng Xue Bao 17:11–15

Yao B, Zhang CY, Wang JH, Fan YL (1998) Recombinant Pichia pastoris overexpressing bioactive phytase. Sci China C 41:330–336

Zhang ZB, Kornegay ET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT (2000) Comparison of genetically engineered Aspergillus and canola in weanling pig diets. J Anim Sci 78:2868–2878