Chuyển đổi rơm rạ thải thành chấm lượng tử carbon và ứng dụng tiềm năng trong cảm biến hóa học: phương pháp xanh và bền vững để giải quyết vấn đề đốt rơm rạ

Manisha Kumari1, Ganga Ram Chaudhary1, Savita Chaudhary1, Mina Huang2,3, Zhanhu Guo3
1Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
2Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, USA
3Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech LLC., Knoxville, USA

Tóm tắt

Tác động có lãi từ việc tái chế chất thải nông nghiệp tái sinh sinh học thành các vật liệu tiên tiến đóng góp lớn vào sự phát triển bền vững của một quốc gia. Nghiên cứu này đề xuất một cách tiếp cận hợp lý để chuyển đổi rơm rạ thải thành các chấm carbon phát quang (CDs) cực kỳ sáng thông qua một quy trình điều trị kinh tế khả thi. Các chấm carbon thu được đã kiểm soát tốt hơn về kích thước và thể hiện độ hiệu suất lượng tử rất cao, khoảng 64%. Các hạt hình thành đã hiển thị hành vi phát xạ phụ thuộc vào kích thích. Việc kiểm soát tốt hơn các tính chất phát quang và lý hóa của các hạt đã phát triển đã mở ra cơ hội cho ứng dụng của chúng trong cảm biến dựa trên phát quang. Các chấm carbon thu được đã thể hiện độ nhạy phát quang cao đối với việc phát hiện axit ellagic (EA) trong giới hạn phát hiện là 0,20 nM. Cảm biến được hình thành đã cho thấy độ chọn lọc cao đối với axit ellagic mà không hiển thị bất kỳ sự can thiệp nào trong sự hiện diện của các phân tử sinh học khác. Tiềm năng của các chấm carbon được chiết xuất từ rơm rạ thải đã được đánh giá trong việc phát hiện chọn lọc các lượng nhỏ axit ellagic trong các sản phẩm mỹ phẩm phổ biến. Tổng thể, bài báo hiện tại cung cấp sự chuyển đổi rẻ tiền và thân thiện với môi trường của các vật liệu rơm rạ thải thành các vật liệu nano phát quang tiên tiến với triển vọng vượt trội trong các ứng dụng cảm biến.

Từ khóa

#tái chế #rơm rạ #chấm carbon #phát quang #cảm biến hóa học #phát hiện axit ellagic #ứng dụng bền vững

Tài liệu tham khảo

Guzmán AÁ, Delvasto AS, Sánchez VE (2015) Valorization of rice straw waste: an alternative ceramic raw material. Ceramica 61:126–136. https://doi.org/10.1590/0366-69132015613571888 Tsaramirsis K, Patel A, Sharma P, Reddy N, Randhawa P, Tsaramirsis G, Pavlopoulou A, Kocer ZA, Piromalis D (2021) Bio-virus spread simulation in real 3D space using augmented reality. Eng Sci 16:319–330. https://doi.org/10.30919/es8d592 Bisla V, Rattan G, Singhal S, Kaushik A (2020) Green and novel adsorbent from rice straw extracted cellulose for efficient adsorption of Hg (II) Ions in an aqueous medium. Int J Biol Macromol 161:194–203. https://doi.org/10.1016/j.ijbiomac.2020.06.035 Wang J, Kang H, Ma H, Liu Y, Xie Z, Wang Y, Fan Z (2021) Super-fast fabrication of MXene Film through a combination of ion induced gelation and vacuum-assisted filtration. Eng Sci 15:57–66. https://doi.org/10.30919/es8d446 Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079 Jorn-am T, Praneerad J, Attajak R, Sirisit N, Manyam J, Paoprasert P (2021) Quasi-Solid, bio-renewable supercapacitor with high specific capacitance and energy density based on rice electrolytes and rice straw-derived carbon dots as novel electrolyte additives. Colloids Surf Physicochem Eng Asp 628:127239. https://doi.org/10.1016/j.colsurfa.2021.127239 Nam H, Capareda SC, Ashwath N, Kongkasawan J (2015) Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors. Energy 93:2384–2394. https://doi.org/10.1016/j.energy.2015.10.028 Jiang Q, Zeng X, Guo Z, Wangila G (2021) 2020: How science can change us. ES Energy Environ 11:1–2. https://doi.org/10.30919/esee8c421 Mussatto SI, Roberto IC (2008) Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. Biotechnol Prog 20:134–139. https://doi.org/10.1021/bp034207i Prasad SR, Teli SB, Ghosh J, Prasad NR, Shaikh VS, Nazeruddin GM, Al-Sehemi AG, Patel I, Shaikh YI (2021) A review on bio-inspired synthesis of silver nanoparticles: their antimicrobial efficacy and toxicity. Eng Sci 16:90–128. https://doi.org/10.30919/es8d479 Shinde DR, Quraishi IS, Pawar RA (2021) An efficient visible light driven-based photocatalytic removal of dyes from the dye effluent using metal halide lamp based slurry reactor. ES Energy Env 14:54–62. https://doi.org/10.30919/esee8c504 Mu L, Dong Y, Li L, Gu X, Shi Y (2021) Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater Manuf 11:72–80. https://doi.org/10.30919/esmm5f1146 Jiang Q, Bell TN, Wang S, Guo Z (2021) Exemplary engineered nanoobjects for food and agroforestry. ES Food Agrofor 6:1–2. https://doi.org/10.30919/esfaf599 Nam H, Choi W, Genuino DA, Capareda SC (2018) Development of rice straw activated carbon and its utilizations. J Environ Chem Eng 6:5221–5229. https://doi.org/10.1016/j.jece.2018.07.045 Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. https://doi.org/10.1016/j.carbpol.2011.08.022 Mottola F, Scudiero N, Iovine C, Santonastaso M, Rocco L (2020) Protective activity of ellagic acid in counteract oxidative stress damage in zebrafish embryonic development. Ecotoxicol Environ Saf 197:110642. https://doi.org/10.1016/j.ecoenv.2020.110642 Galano A, Francisco Marquez M, Pérez-González A (2014) Ellagic Acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol 27:904–918. https://doi.org/10.1021/tx500065y Tavares W, de S, Pastor MM, Tavares AG, Sousa FFO (2018) Biopharmaceutical activities related to ellagic acid, chitosan, and zein and their improvement by association. J Food Sci 83:2970–2975. https://doi.org/10.1111/1750-3841.14369 Kakran MG, Sahoo N, Bao H, Pan Y, Li L (2011) Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr Med Chem 18:4503–4512. https://doi.org/10.2174/092986711797287548 Yu YM, Chang WC, Wu CH, Chiang SY (2005) Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J Nutr Biochem 16:675–681. https://doi.org/10.1016/j.jnutbio.2005.03.013 Jha AB, Panchal SS, Shah A (2018) Ellagic Acid: insights into its neuroprotective and cognitive enhancement effects in sporadic alzheimer’s disease. Pharmacol Biochem Behav 175:33–46. https://doi.org/10.1016/j.pbb.2018.08.007 Shimogaki T, Masuda T (2000) In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int J Cosmet Sci 22:291–303. https://doi.org/10.1046/j.1467-2494.2000.00023.x Hsu CC, Chao YY, Wang SW et al (2019) Polyethylenimine-capped silver nanoclusters as fluorescent sensors for the rapid detection of ellagic acid in cosmetics. Talanta 204:484–490. https://doi.org/10.1016/j.talanta.2019.06.047 Wang Y, Zeng Y, Fu W, Zhang P, Li L, Ye C, Yu L, Zhu X, Zhao S (2018) Seed-mediated growth of Au@Ag core-shell nanorods for the detection of ellagic acid in whitening cosmetics. Anal Chim Acta 1002:97–104. https://doi.org/10.1016/j.aca.2017.11.067 Zhou B, Wu Z, Li X, Zhang J, Hu X (2008) Analysis of ellagic acid in pomegranate Rinds by capillary electrophoresis and high-performance liquid chromatography. Phytochem Anal 19:86–89. https://doi.org/10.1002/pca.1054 Zehl M, Braunberger C, Conrad J, Crnogorac M, Krasteva S, Vogler B, Beifuss U, Krenn L (2011) Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important drosera species by LC–DAD, LC–NMR, NMR, and LC–MS. Anal Bioanal Chem 400:2565–2576. https://doi.org/10.1007/s00216-011-4690-3 Gu J, She J, Yue Y (2020) Micro/nanoscale thermal characterization based on spectroscopy techniques. ES Energy Env 9:15–27. https://doi.org/10.30919/esee8c260 Zhang LX, Duan R, Yang YS, Peng C, Dong LY, Wang H (2021) Rapid and ultrasensitive detection of ellagic acid by integrating boronate-affinity controllable-oriented imprinted magnetic nanoparticle and boronic acid-modified/polyethylene glycol-coated allochroic-graphene oxide. Sensors Actuators B Chem 345:130400. https://doi.org/10.1016/j.snb.2021.130400 Spisso A, Gomez FJV, Fernanda Silva M (2018) Determination of ellagic acid by capillary electrophoresis in Argentinian wines. Electrophoresis 39:1621–1627. https://doi.org/10.1002/elps.201700487 Vekiari SA, Gordon MH, García-Macías P, Labrinea H (2008) Extraction and determination of ellagic acid contentin chestnut bark and fruit. Food Chem 110:1007–1011. https://doi.org/10.1016/j.foodchem.2008.02.005 Genzel F, Dicke MD, Junker-Frohn LV, Neuwohner A, Thiele B, Putz A, Usadel B, Wormit A, Wiese-Klinkenberg A (2021) Impact of moderate cold and salt stress on the accumulation of antioxidant flavonoids in the leaves of two capsicum cultivars. J Agric Food Chem 69:6431–6443. https://doi.org/10.1021/acs.jafc.1c00908 Navada BR, Venkata SK (2022) Fusion-based online identification technique for pneumatic actuator faults. Eng Sci 17:56–69. https://doi.org/10.30919/es8d533 Kumari M, Chaudhary S (2020) Modulating the physicochemical and biological properties of carbon dots synthesised from plastic waste for effective sensing of E. coli. Colloids Surf B Biointerfaces 196:111333. https://doi.org/10.1016/j.colsurfb.2020.111333 Shen Y, Liu S, Wang J, Li D, He Y (2013) Determination of Ellagic acid by fluorescence quenching method with glutathione capped CdTe quantum dots as the probe. Anal Methods 5:3228. https://doi.org/10.1039/c3ay40365c Guo Y, Zhao W (2020) Hydrothermal Synthesis of Highly Fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid. Spectrochim. Acta Part A Mol Biomol Spectrosc 240:118580. https://doi.org/10.1016/j.saa.2020.118580 Aguilera-Carbo A, Augur C, Prado-Barragan L, Aguilar C, Favela-Torres E (2008) Extraction and analysis of ellagic acid from novel complex sources. Chem Pap 62:440–444. https://doi.org/10.2478/s11696-008-0042-y Lin C, Zou Z, Lei Z, Wang L, Song Y (2020) Fluorescent metal-organic frameworks MIL-101(Al)-NH2 for rapid and sensitive detection of ellagic acid. Spectrochim. Acta Part A Mol Biomol Spectrosc 242:118739. https://doi.org/10.1016/j.saa.2020.118739 Sadecka J, Tothova J (2012) Spectrofluorimetric determination of ellagic acid in brandy. Food Chem 135:893–897. https://doi.org/10.1016/j.foodchem.2012.06.019 Lee JH, Johnson JV, Talcott ST (2005) Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J Agric Food Chem 53:6003–6010. https://doi.org/10.1021/jf050468r Matencio A, Navarro-Orcajada S, García-Carmona F, Lopez-Nicolas JM (2018) Ellagic acid–borax fluorescence interaction: application for novel cyclodextrin-borax nanosensors for analyzing ellagic acid in food Samples. Food Funct 9:3683–3687. https://doi.org/10.1039/C8FO00906F Chen Z, Peng Y, Wang S, Chen X, Song T, Qian S, Chen M, Wang Q (2010) Use of gemini surfactant in a one-step ellagic acid assay by resonance light scattering technique. Talanta 82:885–891. https://doi.org/10.1016/j.talanta.2010.04.032 Li Y, Zhang X, Zhu B, Yan J, Xu W (2010) A highly selective colorimetric and Off-on-Off probe for fluoride ions. Anal Sci 26:1077–1080. https://doi.org/10.2116/analsci.26.1077 Luo Y, Wang Q, Zhang Y (2018) Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: a perspective on the past, present, and future. J Agric Food Chem 68:12993–13000. https://doi.org/10.1021/acs.jafc.0c00277 Zhang Z, Yi G, Li P, Zhang X, Fan H, Zhang Y, Wang X, Zhang C (2020) A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale 12:13899–13906. https://doi.org/10.1039/D0NR03163A Yallappa S, Deepthi DR, Yashaswini S, Hamsanandini R, Chandraprasad M, Ashok Kumar S, Hegde G (2017) Natural biowaste of groundnut shell derived nano carbons: synthesis, characterization and its in vitro antibacterial activity. Nano-Structures Nano-Objects 12:84–90. https://doi.org/10.1016/j.nanoso.2017.09.009 Das R, Vupputuri S, Hu Q, Chen Y, Colorado H, Guo Z, Wang Z (2020) Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania. ES Mater Manuf 8:46–53. https://doi.org/10.30919/esmm5f709 Gu D, Zhang P, Zhang L, Liu H, Pu Z, Shang S (2018) Nitrogen and phosphorus co-doped carbon dots derived from lily bulbs for copper ion sensing and cell imaging. Opt Mater (Amst) 83:272–278. https://doi.org/10.1016/j.optmat.2018.06.012 Das P, Ganguly S, Bose M, Mondal S, Das AK, Banerjee S, Das NC (2017) A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off’ probe for selective sensing of copper ions. Mater Sci Eng C 75:1456–1464. https://doi.org/10.1016/j.msec.2017.03.045 Kashyap NK, Hait M, Roymahapatra G, Vaishnav MM (2022) Proximate and elemental analysis of Careya arborea Roxb plant’s root. ES Food Agrofor 7:41–47. https://doi.org/10.30919/esfaf620 Thota SP, Bag PP, Vadlani PV, Belliraj SK (2022) Plant biomass derived multidimensional nanostructured materials: a green alternative for energy storage. Eng Sci 18:31–58. https://doi.org/10.30919/es8d664 Fatima A, Yasir S, Ul-Islam M, Kamal T, Ahmad MW, Abbas Y, Manan S, Ullah MW, Yang G (2022) Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv Compos Hybrid Mater 5:307–321. https://doi.org/10.1007/s42114-021-00369-z Zhu E-Q, Xu G-F, Sun S-F, Yang J, Yang H-Y, Wang D-W, Guo Z-H, Shi Z-J, Deng J (2021) Rosin acid modification of bamboo powder and thermoplasticity of its products based on hydrothermal pretreatment. Adv Compos Hybrid Mater 4:584–590. https://doi.org/10.1007/s42114-021-00266-5 Yan J, Niu Y, Wu C, Shi Z, Zhao P, Naik N, Mai X, Yuan B (2021) Antifungal effect of seven essential oils on bamboo. Adv Compos Hybrid Mater 4:552–561. https://doi.org/10.1007/s42114-021-00251-y Wang Y, Hu Y-J, Hao X, Peng P, Shi J-Y, Peng F, Sun R-C (2020) Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv Compos Hybrid Mater 3:267–284. https://doi.org/10.1007/s42114-020-00158-0 Fu X, Su J, Hou L, Zhu P, Hou Y, Zhang K, Li H, Liu X, Jia C, Xu J (2021) Physicochemical and thermal characteristics of Moringa oleifera seed oil. Adv Compos Hybrid Mater 4:685–695. https://doi.org/10.1007/s42114-021-00302-4 Zhao T, Peng X, Zhao X, Hu J, Jiang T, Lu X, Zhang H, Li T, Ahmad I (2020) Preparation and performance of carbon dot decorated copper sulphide/carbon nanotubes hybrid composite as supercapacitor electrode materials. J Alloys Compd 817:153057. https://doi.org/10.1016/j.jallcom.2019.153057 Chaudhary S, Kumari M, Chauhan P, Chauhan P, Ram Chaudhary G (2021) Upcycling of plastic waste into fluorescent carbon dots: an environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Waste Manag 120:675–686. https://doi.org/10.1016/j.wasman.2020.10.038 Meng W, Zhou X, Qiu Z, Liu C, Chen J, Yue W, Wang M, Bi H (2016) Reduced graphene oxide-supported aggregates of CuInS2 quantum dots as an effective hybrid electron acceptor for polymer-based solar cells. Carbon N Y 96:532–540. https://doi.org/10.1016/j.carbon.2015.09.068 Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M (2013) Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C 33:2914–2917. https://doi.org/10.1016/j.msec.2013.03.018 Ma X, Zhong W, Zhao J, Suib SL, Lei Y (2020) “Self-heating” enabled one-pot synthesis of fluorescent carbon dots. Eng Sci 9:44–49. https://doi.org/10.30919/es8d805 Kachere AR, Kakade PM, Kanwade AR, Dani P, Mandlik NT, Rondiya SR, Dzade NY, Jadkar SR, Bhosale SV (2021) Zinc oxide/graphene oxide nanocomposites: synthesis, characterization and their optical properties. ES Mater Manuf 16:19–29. https://doi.org/10.30919/esmm5f516 Qin C, Gong H, Sun C, Wu X (2021) Optical properties of a core/shell/shell shape metal-insulator-metal composite nanoparticle for solar energy absorption. Eng Sci 17:224–230. https://doi.org/10.30919/es8e509 Chen Y, Lian H, Wei Y, He X, Chen Y, Wang B, Zeng Q, Lin J (2018) Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 10:6734–6743. https://doi.org/10.1039/C8NR00204E Ashok RB, Srinivasa CV, Basavaraju B (2020) Study on morphology and mechanical behavior of areca leaf sheath reinforced epoxy composites. Adv Compos Hybrid Mater 3:365–374. https://doi.org/10.1007/s42114-020-00169-x Nambiar NK, Brindha D, Punniyakotti P, Venkatraman BR, Angaiah S (2021) Derris indica leaves extract as a green inhibitor for the corrosion of aluminium in alkaline medium. Eng Sci 17:167–175. https://doi.org/10.30919/es8d540 Amalraj A, Raj KKJ, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization, and antimicrobial activity of chitosan/gum Arabic/polyethylene glycol composite films incorporated with black pepper essential oil and ginger essential oil as potential packaging and wound dressing materials. Adv Compos Hybrid Mater 3:485–497. https://doi.org/10.1007/s42114-020-00178-w Yang F, Gilreath C, Wang S, Jiang Q (2021) Bowman-Birk inhibitors from plants for inhibiting eukaryotic cells. ES Food Agrofor 4:3–4. https://doi.org/10.30919/esfaf490 Zhu E-Q, Xu G-F, Ye X-Y, Yang J, Yang H-Y, Wang D-W, Shi Z-J, Deng J (2021) Preparation and characterization of hydrothermally pretreated bamboo powder with improved thermoplasticity by propargyl bromide modification in a heterogeneous system. Adv Compos Hybrid Mater 4:1059–1069. https://doi.org/10.1007/s42114-021-00316-y Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924. https://doi.org/10.1039/C7TB02484C Kumari M, Chaudhary GR, Chaudhary S, Umar A (2021) Rapid analysis of trace sulphite ion using fluorescent carbon dots produced from single use plastic cups. Eng Sci 17:101–112. https://doi.org/10.30919/es8d556 Vijeata A, Chaudhary GR, Umar A, Chaudhary S (2021) Distinctive solvatochromic response of fluorescent carbon dots derived from different components of Aegle marmelos plant. Eng Sci 15:197–209. https://doi.org/10.30919/es8e512 Li P, Liu S, Yan S, Fan X, He Y (2011) A sensitive sensor for anthraquinone anticancer drugs and HsDNA based on CdTe/CdS quantum dots fluorescence reversible control. Colloids Surfaces A Physicochem Eng Asp 392:7–15. https://doi.org/10.1016/j.colsurfa.2011.08.037 Deng Z, Zhang Q, Deng Q, Guo Z, Seok I (2022) Modification of coconut shell activated carbon and purification of volatile organic waste gas acetone. Adv Compos Hybrid Mater 5:491–503. https://doi.org/10.1007/s42114-021-00345-7 Deng Z, Deng Q, Wang L, Xiang P, Lin J, Murugadoss V, Song G (2021) Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas. Adv Compos Hybrid Mater 4:751–760. https://doi.org/10.1007/s42114-021-00273-6 Deng Z, Sun S, Li H, Pan D, Patil RR, Guo Z, Seok I (2021) Modification of coconut shell-based activated carbon and purification of wastewater. Adv Compos Hybrid Mater 4:65–73. https://doi.org/10.1007/s42114-021-00205-4 Sun Z, Qu K, Cheng Y, You Y, Huang Z, Umar A, Ibrahim YSA, Algadi H, Castañeda L, Colorado HA, Guo Z (2021) Corncob-derived activated carbon for efficiently adsorption dye in sewage. ES Food Agrofor 4:61–73. https://doi.org/10.30919/esfaf473 Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo Z (2021) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74. https://doi.org/10.30919/es8d588 Shi C, Yuan W, Qu K, Shi J, Eqi M, Tan X, Huang Z, Gándara F, Pan D, Naik N, Zhang Y, Guo Z (2021) Gold/titania nanorod assembled urchin-like photocatalysts with an enhanced hydrogen generation by photocatalytic biomass reforming. Eng Sci 16:374–386. https://doi.org/10.30919/es8d478 Yuan B, Guo M, Murugadoss V, Song G, Guo Z (2021) Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater 4:286–293. https://doi.org/10.1007/s42114-021-00235-y Jing C, Zhang Y, Zheng J et al (2021) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013 Yu Z, Yan Z, Zhang F et al (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875 Pan D, Yang G, Abo-Dief H et al. (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites, Nano-Micro Lett in press, https://doi.org/10.1007/s40820-022-00863-z Jing X, Li Y, Zhu J et al. (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00438-x