Biến đổi giống poplar đen lai với các gen chọn lọc và gen báo cáo ảnh hưởng đến protein trong lá, nhưng không có dấu hiệu của nguy cơ môi trường đáng kể

Springer Science and Business Media LLC - Tập 42 - Trang 1-13 - 2020
Nataliia Kutsokon1,2, Maksym Danchenko2,3, Ludovit Skultety3, Juraj Kleman2, Namik Rashydov1
1Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
3Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia

Tóm tắt

Cây poplar là một loài cây rừng quan trọng về mặt kinh tế, được sử dụng cho nhiều ứng dụng, bao gồm sản xuất sinh khối. Mặc dù công nghệ chuyển gen cho phép đưa nhanh các đặc tính mong muốn vào cây trồng, nhưng đồng thời nó cũng có thể mang lại những tác động không mong muốn. Trong nghiên cứu này, chúng tôi so sánh thành phần protein trong lá của giống cây lai phát triển nhanh Populus deltoides × Populus nigra (Populus × euroamericana) được nhân giống vi mô với các đặc tính báo cáo (GUS) và chọn lọc (NPTII), và giống bố mẹ không chuyển gen. Qua điện di gel hai chiều, chúng tôi phát hiện 5.5% trong tổng số 330 điểm protein được phát hiện có sự tích lũy chênh lệch. Phần lớn trong số họ có sự phong phú thấp hơn ở dòng chuyển gen. Những protein này chủ yếu liên quan đến chuyển hóa cơ bản, sản xuất năng lượng và tổng hợp/hỗ trợ protein; đáng chú ý, không có protein nào trong số này liên kết trực tiếp với hoạt động của neomycin phosphotransferase hoặc β-glucuronidase. Một số protein có sự tích lũy khác biệt có thể liên quan đến phản ứng căng thẳng do quá trình chuyển giao qua Agrobacterium gây ra. Hơn nữa, mức độ phong phú thấp của hai isoform glutamine synthase nằm trong bào tương và sự tích lũy của protein lưu trữ vỏ cây A ở dòng chuyển gen có thể gợi ý sự suy giảm trong chuyển hóa và lưu trữ nitơ. Việc chèn một cấu trúc gen mô hình không làm thay đổi các loci gen bên cạnh, và cũng không có độc tố hay dị ứng nào có sự phong phú khác biệt. Về bản chất, chúng tôi không phát hiện protein nào chỉ ra nguy cơ đáng kể về sức khỏe hoặc môi trường trong giống poplar đen lai chuyển gen.

Từ khóa

#poplar đen lai #gen báo cáo #gen chọn lọc #biến đổi gen #protein trong lá #nguy cơ môi trường

Tài liệu tham khảo

Abbink TEM, Peart JR, Mos TNM et al (2002) Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295:307–319. https://doi.org/10.1006/viro.2002.1332 Abril N, Gion J-M, Kerner R et al (2011) Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry 72:1219–1242. https://doi.org/10.1016/j.phytochem.2011.01.005 Agapito-Tenfen SZ, Guerra MP, Wikmark O-G, Nodari RO (2013) Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil. Proteome Sci 11:46. https://doi.org/10.1186/1477-5956-11-46 Al-Shahrour F, Minguez P, Marqués-Bonet T et al (2010) Selection upon genome architecture: Conservation of functional neighborhoods with changing genes. PLoS Comput Biol 6:1000953. https://doi.org/10.1371/journal.pcbi.1000953 Barbosa HS, Arruda SCC, Azevedo RA, Arruda MAZ (2012) New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem 402:299–314. https://doi.org/10.1007/s00216-011-5409-1 Baucher M, van Montagu M, Boerjan W (2000) Improvement of wood quality for the pulp and paper industry by genetic modification of lignin biosynthesis in poplar. Plant genetic engineering towards the third millennium. Elsevier, Amsterdam, pp 215–221 Bonhomme L, Monclus R, Vincent D et al (2009) Leaf proteome analysis of eight Populus x euramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics 9:4121–4142. https://doi.org/10.1002/pmic.200900047 Brosowska-Arendt W, Gallardo K, Sommerer N, Weidner S (2014) Changes in the proteome of pea (Pisum sativum L.) seeds germinating under optimal and osmotic stress conditions and subjected to post-stress recovery. Acta Physiol Plant 36:795–807. https://doi.org/10.1007/s11738-013-1458-8 Castro-Rodríguez V, García-Gutiérrez A, Canales J et al (2011) The glutamine synthetase gene family in Populus. BMC Plant Biol 11:119. https://doi.org/10.1186/1471-2229-11-119 Chaix G, Monteuuis O (2004) Biotechnology in the forestry sector. Preliminary review of biotechnology in forestry, including genetic modification. FAO, Rome, pp 19–56 Chen S, Yuan H-M, Liu G-F et al (2012) A label-free differential quantitative proteomics analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant. Mol Biol Rep 39:7657–7664. https://doi.org/10.1007/s11033-012-1600-5 Chen S, Bai S, Liu G et al (2014) Comparative genomic analysis of transgenic poplar dwarf mutant reveals numerous differentially expressed genes involved in energy flow. Int J Mol Sci 15:15603–15621. https://doi.org/10.3390/ijms150915603 Cho J-S, Jeon H-W, Kim M-H et al (2019) Wood forming tissue-specific bicistronic expression of PdGA20ox1 and PtrMYB221 improves both the quality and quantity of woody biomass production in a hybrid poplar. Plant Biotechnol J 17:1048–1057. https://doi.org/10.1111/pbi.13036 Coleman GD, Banados MP, Chen THH (1994) Poplar bark storage protein and a related wound-induced gene are differentially induced by nitrogen. Plant Physiol 106:211–215. https://doi.org/10.1104/pp.106.1.211 Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health (2004) Safety of genetically engineered foods: Approaches to assessing unintended health effects, National Research Council (US). National Academies Press (US), Washington (DC) Corpillo D, Gardini G, Vaira AM et al (2004) Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: the case of a virus-resistant tomato. Proteomics 4:193–200. https://doi.org/10.1002/pmic.200300540 Davis JM, Egelkrout EE, Coleman GD et al (1993) A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol Biol 23:135–143. https://doi.org/10.1007/BF00021426 El-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG (2004) Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol 24:729–736. https://doi.org/10.1093/treephys/24.7.729 Fan D, Liu T, Li C et al (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217. https://doi.org/10.1038/srep12217 Fekecsová S, Danchenko M, Uvackova L et al (2015) Using 7 cm immobilized pH gradient strips to determine levels of clinically relevant proteins in wheat grain extracts. Front Plant Sci 6:433. https://doi.org/10.3389/fpls.2015.00433 Ferreira S, Hjernø K, Larsen M et al (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377. https://doi.org/10.1093/aob/mcl106 Fladung M, Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 12:334–340. https://doi.org/10.1111/j.1438-8677.2009.00293.x Fu J, Momčilović I, Prasad PVV (2012) Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. J Bot 2012:835836. https://doi.org/10.1155/2012/835836 Gábrišová D, Klubicová K, Danchenko M et al (2016) Do cupins have a function beyond being seed storage proteins? Front Plant Sci 6:1215. https://doi.org/10.3389/fpls.2015.01215 Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217. https://doi.org/10.1146/annurev-genet-120215-035320 Gilissen LJW, Metz PLJ, Stiekema WJ, Nap J-P (1998) Biosafety of E. coli β-glucuronidase (GUS) in plants. Transgenic Res 7:157–163. https://doi.org/10.1023/A:1008832711805 Golestan Hashemi FS, Ismail MR, Rafii MY et al (2018) Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. Biotechnol Biotechnol Equip 32:815–829. https://doi.org/10.1080/13102818.2018.1478748 Gong CY, Wang T (2013) Proteomic evaluation of genetically modified crops: Current status and challenges. Front Plant Sci 4:41. https://doi.org/10.3389/fpls.2013.00041 Gong CY, Li Q, Yu HT et al (2012) Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res 11:3019–3029. https://doi.org/10.1021/pr300148w Guo Y, Wang Z, Guan X et al (2017) Proteomic analysis of Potentilla fruticosa L. leaves by iTRAQ reveals responses to heat stress. PLoS ONE 12:e0182917. https://doi.org/10.1371/journal.pone.0182917 Harfouche A, Meilan R, Altmane A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17. https://doi.org/10.1016/j.tibtech.2010.09.003 Herman RA, Price WD (2013) Unintended compositional changes in genetically modified (GM) crops: 20 years of research. J Agric Food Chem 61:11695–11701. https://doi.org/10.1021/jf400135r Herman RA, Fast BJ, Scherer PN et al (2017) Stacking transgenic event DAS-Ø15Ø7-1 alters maize composition less than traditional breeding. Plant Biotechnol J 15:1264–1272. https://doi.org/10.1111/pbi.12713 Hernández-Terán A, Wegier A, Benítez M et al (2017) Domesticated, genetically engineered, and wild plant relatives exhibit unintended phenotypic differences: a comparative meta-analysis profiling rice, canola, maize, sunflower, and pumpkin. Front Plant Sci 8:2030. https://doi.org/10.3389/fpls.2017.02030 Jelenić S (2005) Food safety evaluation of crops produced through genetic engineering—how to reduce unintended effects? Arh Hig Rada Toksikol 56:185–193 Jing ZP, Gallardo F, Pascual MB et al (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145. https://doi.org/10.1111/j.1469-8137.2004.01173.x Jones AME, Thomas V, Bennett MH et al (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620. https://doi.org/10.1104/pp.106.086231 Kazana V, Tsourgiannis L, Iakovoglou V et al (2016) Public attitudes towards the use of transgenic forest trees: a crosscountry pilot survey. IForest 9:344–353. https://doi.org/10.3832/ifor1441-008 Khudolieieva L, Kutsokon N, Rashydov N, Dugan O (2016) Quantative and qualitative evaluations of environmentally dangerous wastes emission from burning wood comparing to natural gas and coal in Ukrainian. Biol Stud 10:61–70. https://doi.org/10.30970/sbi.1003.491 Klocko AL, Lu H, Magnuson A et al (2018) Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Front Bioeng Biotechnol 6:100. https://doi.org/10.3389/fbioe.2018.00100 Klubicová K, Uvácková L, Danchenko M et al (2017) Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. J Proteomics 169:99–111. https://doi.org/10.1016/j.jprot.2017.05.013 Kutsokon NK (2011) Main trends in the genetic transformation of Populus species. Cytol Genet 45:352–361. https://doi.org/10.3103/S009545271106003X Kutsokon NK, Rudas VA, Shinkaruk MV et al (2016) Genetic transformation of Populus nigra x P. deltoides (black poplar, clone ‘Gradizka’) in Ukrainian. Visnyk UTGiS 14:187–191 Ladics GS, Bartholomaeus A, Bregitzer P et al (2015) Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 24:587–603. https://doi.org/10.1007/s11248-015-9867-7 Li X, Cai C, Wang Z et al (2018) Plastid translation elongation factor Tu is prone to heat-induced aggregation despite its critical role in plant heat tolerance. Plant Physiol 176:3027–3045. https://doi.org/10.1104/pp.17.01672 Liu Z, Li Y, Zhao J et al (2012) Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao. Int J Biol Sci 8:953–963. https://doi.org/10.7150/ijbs.4527 Lomaglio T, Rocco M, Trupiano D et al (2015) Effect of short-term cadmium stress on Populus nigra L. detached leaves. J Plant Physiol 182:40–48. https://doi.org/10.1016/j.jplph.2015.04.007 Man H-M, Boriel R, El-Khatib R, Kirby EG (2005) Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol 167:31–39. https://doi.org/10.1111/j.1469-8137.2005.01461.x Mesnage R, Agapito-Tenfen SZ, Vilperte V et al (2016) An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Sci Rep 6:37855. https://doi.org/10.1038/srep37855 Morse M, Rafudeen MS, Farrant JM (2011) An overview of the current understanding of desiccation tolerance in the vegetative tissues of higher plants. In: Plant responses to drought and salinity stress developments in a post-genomic era. Elsevier, online, pp 319–347 Nováková S, Danchenko M, Skultety L et al (2018) Photosynthetic and stress responsive proteins are altered more effectively in Nicotiana benthamiana infected with Plum pox virus aggressive PPV-CR versus mild PPV-C cherry-adapted isolates. J Proteome Res 17:3114–3127. https://doi.org/10.1021/acs.jproteome.8b00230 Park S-Y, Yin X, Duan K et al (2014) Heat shock protein 90.1 plays a role in Agrobacterium-mediated plant transformation. Mol Plant 7:1793–1796. https://doi.org/10.1093/mp/ssu091 Pettengill EA, Pettengill JB, Coleman GD (2013) Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom. BMC Plant Biol 13:118. https://doi.org/10.1186/1471-2229-13-118 Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143. https://doi.org/10.1093/jxb/ern253 Scossa F, Laudencia-Chingcuanco D, Anderson OD et al (2008) Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966. https://doi.org/10.1002/pmic.200700861 Seabra AR, Silva LS, Carvalho HG (2013) Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol 13:137. https://doi.org/10.1186/1471-2229-13-137 Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta Bioenerg 1277:35–60. https://doi.org/10.1016/S0005-2728(96)00102-8 Shevchenko A, Tomas H, Havliš J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468 Sorochinskii BV, Burlaka OM, Naumenko VD, Sekan AS (2011) Unintended effects of genetic modifications and methods of their analysis in plants. Cytol Genet 45:324–332. https://doi.org/10.3103/S0095452711050124 Srivastava V, Weber JR, Malm E et al (2016) Proteomic analysis of a poplar cell suspension culture suggests a major role of protein S-acylation in diverse cellular processes. Front Plant Sci 7:477. https://doi.org/10.3389/fpls.2016.00477 Szuba A, Lorenc-Plucińska G (2018) Field proteomics of Populus alba grown in a heavily modified environment—an example of a tannery waste landfill. Sci Total Environ 610–611:1557–1571. https://doi.org/10.1016/j.scitotenv.2017.06.102 Tao C, Jin X, Zhu L, Li H (2016) Two-dimensional gel electrophoresis-based proteomic analysis reveals N-terminal truncation of the Hsc70 protein in cotton fibers in vivo. Sci Rep 6:36931. https://doi.org/10.1038/srep36961 Trupiano D, Rocco M, Renzone G et al (2012) The proteome of Populus nigra woody root: response to bending. Ann Bot 110:415–432. https://doi.org/10.1093/aob/mcs040 Valdés A, Simó C, Ibáñez C, García-Cañas V (2014) Profiling of genetically modified organisms using omics technologies. Applications of advanced omics technologies: from genes to metabolites. Elsevier, Amsterdam, pp 349–373 Valenzuela S, Balocchi C, Rodríguez J (2006) Transgenic trees and forestry biosafety. Electron J Biotechnol 9:335–339. https://doi.org/10.2225/vol9-issue3-22 Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. https://doi.org/10.1016/j.tplants.2004.03.006 Wang L, Wang X, Jin X et al (2015) Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Sci 13:15. https://doi.org/10.1186/s12953-015-0071-8 Weih M, Polle A (2016) Editorial: ecological consequences of biodiversity and biotechnology in agriculture and forestry. Front Plant Sci 7:210. https://doi.org/10.3389/fpls.2016.00210 Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 Williams EJB, Bowles DJ (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14:1060–1067. https://doi.org/10.1101/gr.2131104 Yer EN, Baloglu MC, Ayan S (2018) Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene 678:324–336. https://doi.org/10.1016/j.gene.2018.08.049 Yu J, Jin X, Sun X et al (2017) Hydrogen peroxide response in leaves of poplar (Populus simonii × Populus nigra) revealed from physiological and proteomic analyses. Int J Mol Sci 18:2085. https://doi.org/10.3390/ijms18102085 Zeng L, Deng R, Guo Z et al (2016) Genome-wide identification and characterization of glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics 17:240. https://doi.org/10.1186/s12864-016-2527-3 Zhang L, Liu M, Qiao G et al (2013) Transgenic poplar “NL895” expressing CpFATB gene shows enhanced tolerance to drought stress. Acta Physiol Plant 35:603–613. https://doi.org/10.1007/s11738-012-1101-0 Zhang Y, Feng L, Jiang H et al (2017) Different proteome profiles between male and female Populus cathayana exposed to UV-B radiation. Front Plant Sci 8:320. https://doi.org/10.3389/fpls.2017.00320 Zhao F, Chen L, Perl A et al (2011) Proteomic changes in grape embryogenic callus in response to Agrobacterium tumefaciens-mediated transformation. Plant Sci 181:485–495. https://doi.org/10.1016/j.plantsci.2011.07.016 Zhu Y-N, Shi D-Q, Ruan M-B et al (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS ONE 8:e80218. https://doi.org/10.1371/journal.pone.0080218 Zolla L, Rinalducci S, Antonioli P, Righetti PG (2008) Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res 7:1850–1861. https://doi.org/10.1021/pr0705082