Transformation of a pair of commuting Hamiltonians quadratic in momenta to canonical form and real partial separation of variables for the Clebsch top
Tóm tắt
In the case of two degrees of freedom the simultaneous diagonalization of pairs of Hamiltonians quadratic on momenta that commute with respect to the standard Poisson bracket is considered. A general scheme of partial separation of variables for such pairs is discussed. As an example the Clebsch top is considered.
Tài liệu tham khảo
Marikhin, V.G. and Sokolov, V.V., Teor. Math. Phys., 2006, vol. 149, no. 2, pp. 147–160. (In Russian)
Marikhin V. G. and Sokolov, V.V., Separation of Variables on a Non-Hyperelliptic Curve, Reg. and Chaot. Dynamics, 2005, vol. 10, no. 1, pp. 59–70.
Marikhin, V.G. and Sokolov, V.V. O Kvazishtekkelevykh Hamiltonianakh, Uspekhi math. nauk, 2005, vol. 60, no. 5, pp. 175–176. (In Russian)
Dorizzi, B., Grammaticos, B., Ramani A., and Winternitz P., Integrable Hamiltonian Systems with Velocity Dependent Potentials, J. Math. Phys., 1985, vol. 26, pp. 3070–3079.
Ferapontov, E.V. and Fordy, A.P., Nonhomogeneous Systems of Hydrodynamic Type Related to Quadratic Hamiltonians with Electromagnetic Term, Physica D, 1997, vol. 108, pp. 350–364.
Ferapontov, E.V. and Fordy, A. P., Commuting Quadratic Hamiltonians with Velocity-Dependent Potentials, Rep. Math. Phys., 1999, vol. 44, no. 1/2, pp. 71–80.
McSween E. and Winternitz, P., Integrable and Superintegrable Hamiltonian Systems in Magnetic Fields, J. Math. Phys., 2000, vol. 41, pp. 2957–2967.
Yehia, H. M., Generalized Natural Mechanical Systems of Two Degrees of Freedom with Quadratic Integrals, J. Phys. A, 1992, vol. 25, pp. 197–221.
Perelomov, A. I., Some Remarks on the Integrability of the Equation of Motion of a Rigid Body in an Ideal Liquid, Funct. Anal. Pril., 1981, vol. 15, pp. 83–85.
Schottky, F., Uber das Analytische Problem der Rotation eines Starren Körpers in Raume von vier Dimensionen. Sitzungsberichte drer Königligh preussischen Academie der Wissenschaften zu Berlin, 1891, vol. XIII, pp. 227–232.
Manakov, S.V., A remark on integration of the Euler equations for n-dimensional rigid body dynamics, Funct. Anal. Appl., 1976, vol. 10, no. 4, pp. 93–94.
Clebsch, A., Über die Bewegung eines Körpers in einer Flüssigkeit, Math. Annalen, 1870, vol. 3, pp. 238–262.
Bobenko, A. I., Reyman A.G., and Semenov-Tian-Shansky, M.A., The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions, Commun. Math. Phys., 1989, vol. 122, p. 321.
Komarov, I.V. and Tsiganov, A.V., On integration of the Kowalevski gyrostat problem, Regul. Chaotic. Dyn., 2004, vol. 9, no. 2, pp. 169–187.
Prasolov, V.V. and Solov’ev, Yu. P., Ellipticheskie Funktsii i Algebraichekie Uravneniya, Factorial, 1997, 288 pp.