Transformation and gene editing in the bioenergy grass Miscanthus
Tóm tắt
Miscanthus, a C4 member of Poaceae, is a promising perennial crop for bioenergy, renewable bioproducts, and carbon sequestration. Species of interest include nothospecies M. x giganteus and its parental species M. sacchariflorus and M. sinensis. Use of biotechnology-based procedures to genetically improve Miscanthus, to date, have only included plant transformation procedures for introduction of exogenous genes into the host genome at random, non-targeted sites. We developed gene editing procedures for Miscanthus using CRISPR/Cas9 that enabled the mutation of a specific (targeted) endogenous gene to knock out its function. Classified as paleo-allopolyploids (duplicated ancient Sorghum-like DNA plus chromosome fusion event), design of guide RNAs (gRNAs) for Miscanthus needed to target both homeologs and their alleles to account for functional redundancy. Prior research in Zea mays demonstrated that editing the lemon white1 (lw1) gene, involved in chlorophyll and carotenoid biosynthesis, via CRISPR/Cas9 yielded pale green/yellow, striped or white leaf phenotypes making lw1 a promising target for visual confirmation of editing in other species. Using sequence information from both Miscanthus and sorghum, orthologs of maize lw1 were identified; a multi-step screening approach was used to select three gRNAs that could target homeologs of lw1. Embryogenic calli of M. sacchariflorus, M. sinensis and M. x giganteus were transformed via particle bombardment (biolistics) or Agrobacterium tumefaciens introducing the Cas9 gene and three gRNAs to edit lw1. Leaves on edited Miscanthus plants displayed the same phenotypes noted in maize. Sanger sequencing confirmed editing; deletions in lw1 ranged from 1 to 26 bp in length, and one deletion (433 bp) encompassed two target sites. Confocal microscopy verified lack of autofluorescence (chlorophyll) in edited leaves/sectors. We developed procedures for gene editing via CRISPR/Cas9 in Miscanthus and, to the best of our knowledge, are the first to do so. This included five genotypes representing three Miscanthus species. Designed gRNAs targeted all copies of lw1 (homeologous copies and their alleles); results also confirmed lw1 made a good editing target in species other than Z. mays. The ability to target specific loci to enable endogenous gene editing presents a new avenue for genetic improvement of this important biomass crop.
Tài liệu tham khảo
Hodkinson TR, Renvoize SA, Chase MW. Systematics of Miscanthus. Asp Appl Biol. 1997;49:189–98.
Hodkinson TR, Klaas M, Jones MB, Prickett R, Barth S. Miscanthus: a case study for the utilization of natural genetic variation. Plant Genet Resour. 2015;13:219–37.
Hodkinson TR, Renvoize S. Nomenclature of Miscanthus x giganteus (Poaceae). Kew Bull. 2001;56:759–60.
Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA. The use of DNA sequencing (ITS and trnL-F) AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Amer J Bot. 2002;89:279–86.
Arnoult S, Brancourt-Hulmel M. A review on Miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. BioEnergy Res. 2015;8:502–26.
Quinn LD, Straker KC, Guo J, Kim S, Thapa S, Kling G, Lee DK, Voigt TB. Stress-tolerant feedstocks for sustainable bioenergy production on marginal land. BioEnergy Res. 2015;8:1081–100.
McCalmont JP, Hastings A, McNamara NP, Richter GM, Robson P, Donnison IS, Clifton-Brown J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob Change Biol Bioenergy. 2017;9:489–507.
Lee M-S, Mitchell R, Heaton E, Zumpf C, Lee DK. Warm-season grass monocultures and mixtures for sustainable bioenergy feedstock production in the Midwest, USA. BioEnergy Res. 2019;12:43–54.
Li W, Ciais P, Makowski D, Peng S. A global yield dataset for major lignocellulosic bioenergy crops based on field measurements. Sci Data. 2018;5:180169.
Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE. 2012;7:e33821.
Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genom. 2012;13:142.
Mitros T, Session AM, James BT, Wu GA, Belaffif MB, Clark LV, Shu S, Dong H, Barling A, Holmes JR, Mattick JE, Bredeson JV, Liu S, Farrar K, Głowacka K, Jeżowski S, Barry K, Chae WB, Juvik JA, Gifford J, Oladeinde A, Yamada T, Grimwood J, Putnam NH, De Vega J, Barth S, Klaas M, Hodkinson T, Li L, Jin X, Peng J, Yu CY, Heo K, Yoo JH, Ghimire BK, Donnison IS, Schmutz J, Hudson ME, Sacks EJ, Moose SP, Swaminathan K, Rokhsar DS. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat Commun. 2020;11:5442.
Gawel NJ, Robacker CD, Corley WL. In vitro propagation of Miscanthus sinensis. HortScience. 1990;25:1291–3.
Lewandowski I, Kahnt G. Development of a tissue culture system with unemerged inflorescences of Miscanthus ‘giganteus’ for the induction and regeneration of somatic embryoids. Beitr Biol Pflanzen. 1993;67:439–51.
Godovikova VA, Moiseyeva EA, Shumny VK. Cell and tissue culture of Miscanthus sacchariflorus. In: Proceedings of the Second Biomass Conference of the Americas: energy, environment, agriculture and industry; 1995 Aug 21–24; Portland, OR. Golden: National Renewable Energy Laboratory; 1995. p. 350–356
He L, Zhou P, Liu X, Cao X, Cao M. Study on the culture of different explants of Miscanthus sacchariflorus (Maxim.) Benth et Hook in vitro. Acta Bot Bor-Occident Sin. 1995;15:307–13.
Dalton SJ. Biotechnology of Miscanthus. In: Jain S, Dutta Gupta S, editors. Biotechnology of neglected and underutilized crops. Dordrecht: Springer; 2013. p. 243–94.
Yi Z, Zhou P, Chu C, Li X, Tian W, Wang L, Cao S, Tang Z. Establishment of genetic transformation system for Miscanthus sacchariflorus and obtaining of its transgenic plants. High Technol Lett. 2004;10:27–31.
Sobańska K, Cerazy-Waliszewska J, Kowalska M, Rakoczy M, Podkowiński J, Ślusarkiewicz-Jarzina A, Ponitka A, Jeżowski S, Pniewski T. Optimised expression cassettes of hpt marker gene for biolistic transformation of Miscanthus sacchariflorus. Biomass Bioenergy. 2019;127:105255.
Xia Y, Xu J, Duan J, Liu Q, Huang H, Yi Z, Chen Z. Transgenic Miscanthus lutarioriparius that co-expresses the Cry 2Aa# and Bar genes. Can J Plant Sci. 2019;99:841–51.
Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T. Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. Glob Change Biol Bioenergy. 2011;3:322–32.
Hwang O-J, Cho M-A, Han Y-J, Kim Y-M, Lim S-H, Kim D-S, Hwang I, Kim J-I. Agrobacterium-mediated genetic transformation of Miscanthus sinensis. Plant Cell Tissue Organ Cult. 2014;117:51–63.
Hwang O-J, Lim S-H, Han Y-J, Shin A-Y, Kim D-S, Kim J-I. Phenotypic characterization of transgenic Miscanthus sinensis plants overexpressing Arabidopsis phytochrome B. Int J Photoenergy. 2014;2014:501016.
Yoo JH, Seong ES, Ghimire BK, Heo K, Jin X, Yamada T, Clark LV, Sacks EJ, Yu CY. Establishment of Miscanthus sinensis with decreased lignin biosynthesis by Agrobacterium-mediated transformation using antisense COMT gene. Plant Cell Tissue Organ Cult. 2018;133:359–69.
Wu Y, Zhou N, Ni X, Okoye CO, Wang Y, Li X, Gao L, Zhou G, Jiang J. Developing a long-term and powerful in vitro culture and Agrobacterium-mediated transformation system for Miscanthus sinensis (Poaceae). Ind Crops Prod. 2021;161:113190.
Trieu ATN, inventor. Miscanthus transformation methods. United States patent application publication US 2012/0030837A1. Feb 2.
Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J-K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23:1229–32.
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant. 2013;6:2008–11.
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L-J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013;23:1233–6.
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686–8.
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9:985.
Jung C, Capistrano-Gossmann G, Braatz J, Sashidhar N, Melzer S. Recent developments in genome editing and applications in plant breeding. Plant Breed. 2018;137:1–9.
Kaul T, Raman NM, Eswaran M, Thangaraj A, Verma R, Sony SK, Sathelly KM, Kaul R, Yadava P, Agrawal PK. Data mining by pluralistic approach on CRISPR gene editing in plants. Front Plant Sci. 2019;10:801.
Tulpule SH. A study of pleiotropic genes in maize. Am J Bot. 1954;41:294–301.
Lu X-M, Hu X-J, Zhao Y-Z, Song W-B, Zhang M, Chen Z-L, Chen W, Dong Y-B, Wang Z-H, Lai J-S. Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize. Mol Plant. 2012;5:1100–12.
Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics. 2016;43:37–43.
Jinga SJ. Genome editing with CRISPR-Cas9 in the Illinois long term selection experiment. Urbana-Champaign IL: University of Illinois; 2019.
Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J. 2018;16:1848–57.
Sood P, Bhattacharya A, Sood A. Problems and possibilities of monocot transformation. Biol Plant. 2011;55:1–15.
Ahmed RI, Ding A, Xie M, Kong Y. Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor). Int J Mol Sci. 2018;19:2983.
Maize Genetics and genomics database. https://www.maizegdb.org/gene_center/gene/lw1. Initially accessed 08 March 2020.
The UNAFold Web Server, RNA folding form. http://www.unafold.org/mfold/applications/rna-folding-form.php. Initially accessed 01 April 2020.
Liang G, Zhang H, Lou D, Yu D. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep. 2016;6:21451.
Bruegmann T, Deecke K, Fladung M. Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars. Int J Mol Sci. 2019;20:3623.
Baldwin BS. 2013 Mississippi State University, assignee. Miscanthus plant named ‘MSU-MFL1’. United States plant patent US PP23489P3. 2013 Mar 19.
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Holme IB, Krogstrup P, Hansen J. Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus x ogiformis honda giganteus’ as affected by proline. Plant Cell Tissue Organ Cult. 1997;50:203–10.
U.S. Department of Energy, Joint Genome Institute, Phytozome. https://phytozome-next.jgi.doe.gov. Initially accessed 08 March 2020.
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Geneious, Geneious Prime. https://www.geneious.com. Initially accessed 09 March 2020.
Integrated DNA Technologies, CRISPR-Cas9 guide RNA design checker. https://sg.idtdna.com/site/order/designtool/index/CRISPR_SEQUENCE. Initially accessed 19 March 2020.
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. 2014;32:1262–7.
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32.
Riesenberg S, Helmbrecht N, Kanis P, Maricic T, Pääbo S. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nat Commun. 2022;13:489.
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y-G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 2015;8:1274–84.
Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK. Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol. 1988;86:602–6.
Caplan A, Dekeyser R, van Montagu M. Selectable markers for rice transformation. Methods Enzymol. 1992;216:426–41.
Hood EE, Gelvin SB, Melchers LS, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993;2:208–18.
Perera D, Barnes DJ, Baldwin BS, Reichert NA. Direct and indirect in vitro regeneration of Miscanthus x giganteus cultivar freedom: effects of explant type and medium on regeneration efficiency. In Vitro Cell Dev Biol-Plant. 2015;51:294–302.