Transformation Process of the Magnetron-Sputtered Ag2O Film in Hydrogen Annealing

Brazilian Journal of Physics - Tập 44 - Trang 39-44 - 2013
Xiao-Yong Gao1, Meng-Ke Zhao1, Hong-Tao Liu1, Sa Zhang1
1Key Laboratory of Material Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou, China

Tóm tắt

The current paper addresses the effect of the hydrogen partial pressure on the microstructure and transformation of the Ag2O film. The transformation process and mechanism were also analyzed in detail. Increasing the hydrogen partial pressure can accelerate the transformation of Ag2O to Ag and lower the critical transformation temperature of the film due to the enhanced hydrogen reduction and to both of the lowered activation energy of the reaction of Ag2O with hydrogen and enhanced lattice strain of the Ag2O film. Hydrogen-involved reaction in the whole hydrogen annealing process is mainly hydrogen reduction reaction with Ag2O. Diffusion of hydrogen and gaseous H2O molecules accompanies the whole hydrogen annealing process.

Tài liệu tham khảo

J. Tominaga, T. Nakano, N. Atoda, in Extended Abstracts of the 39th Spring Meeting of the Japan Society of Applied Physics and Related Societies, 30 aL-3. (Nippon Univ., Narashino, 1993) Y. Chiu, U. Rambabu, M.H. Hsu, H.P.D. Shieh, C.Y. Chen, H.H. Lin, J. Appl. Phys. 94, 1996 (2003) J. Kim, H. Fuji, Y. Yamakama, T. Nakano, D. Büchel, J. Tominaga, N. Atoda, Jpn. J. Appl. Phys. 40, 1634 (2001) X.Y. Zhang, X.Y. Pan, Q.F. Zhang, B.X. Xu, H.B. Jiang, C.L. Liu, Q.H. Gong, J.H. Wu, Acta Phys.-Chim. Sin. 19, 203 (2003). (in Chinese) B. Standke, M. Jansen, Angew. Chem. Int. Ed. 25, 77 (1986) A.N. Mansour, J. Phys. Chem. 94, 1006 (1990) L.J. Qin, Z. Wang, Y.G. Jia, H.Z. Xu, G.D. Wang, J. Funct. Mater. 1(37), 139 (2006) H.J. Chuang, H.W. Ko, Proc. Natl. Sci. Counc. ROC. A 13, 145 (1989) Y. Abe, T. Hasegawa, M. Kawamura, K. Sasaki, Vacuum 76, 1 (2004) X.Y. Gao, S.Y. Wang, J. Li, Y.X. Zheng, R.J. Zhang, P. Zhou, Y.M. Yang, L.Y. Chen, Thin Solid Films. 455–456, 438 (2004) X.Y. Gao, H.L. Feng, J.M. Ma, Z.Y. Zhang, J.X. Lu, Y.S. Chen, S.E. Yang, J.H. Gu, Phys. B. 405, 1922 (2010) X.Y. Gao, H.L. Feng, Z.Y. Zhang, J.M. Ma, J.X. Lu, China Phys. Lett. 27, 026804 (2010) Z.Y. Zhang, X.Y. Gao, H.L. Feng, J.M. Ma, J.X. Lu, Acta Phys. Sin. 60, 036107 (2011). (in Chinese) W.W. Liu, B. Yao, Y.F. Li, B.H. Li, C.J. Zheng, B.Y. Zhang, C.X. Shan, Z.Z. Zhang, J.Y. Zhang, D.Z. Shen, Appl. Surf. Sci. 255, 6745 (2009) K.B. Han, C.S. Kim, C.H. Jeon, H.S. Jhon, S.Y. Lee, Mat. Sci. Eng. B-Solid. 109, 170 (2004) X.Y. Gao, M.K. Zhao, Z.Y. Zhang, C. Chen, J.M. Ma, J.X. Lu, Thin Solid Films 519, 6620 (2011) W.F. Wei, X.H. Mao, L.A. Ortiz, D.R. Sadoway, J. Mater. Chem. 21, 432 (2011) D. Jelić, J. Penavin-Ŝkundrić, D. Majstorović, S. Mentus, Thermochim. Acta. 526, 252 (2011) D. Vasic, Z. Ristanovic, I. Pasti, S. Mentus, Russ. J. Phys. Chem. A. 85, 2373 (2011) X.C. Mi, Y.Y. Chen, Z.J. Wu, X.H. Liu, S.Y. Yang, L.C. Zhang, PARTA Phys. Test. 40(4), 179 (2004). (in Chinese) X.Y. Fan, S.M. Ma, China Ceram. Ind. 9(1), 43 (2002). (in Chinese)