Transferring lead-free piezoelectric ceramics into application

Journal of the European Ceramic Society - Tập 35 Số 6 - Trang 1659-1681 - 2015
Jürgen Rödel1, Kyle G. Webber1, Robert Dittmer1, Wook Jo2, Masahiko Kimura3, Dragan Damjanović4
1Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
2School of Mechanical and Advanced Materials Engineering, UNIST, Ulsan, Republic of Korea
3Materials Technology Center, Murata Manufacturing Company Ltd, Japan
4Ceramics Laboratory, Institute of Materials, School of Engineering, EPFL, Lausanne, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Saito, 2004, Lead-free piezoceramics, Nature, 432, 84, 10.1038/nature03028

2013, EU-Commision Directive 2013/28/EU of 17 May 2013 amending annex II to directive 2000/53/EC of the European Parliament and of the Council on end-of-life vehicles, Off J Eur Union, L135, 14

1989, Off J Eur Commun, L398, 19

2000, Official Journal of the European Communities, L287, 46

Jo, 2012, Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective, J Electroceram, 29, 71, 10.1007/s10832-012-9742-3

Takenaka, 1991, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn J Appl Phys Part 1, 30, 2236, 10.1143/JJAP.30.2236

Turner, 1994, Materials for high temperature acoustic and vibration sensors: a review, Appl Acoust, 41, 299, 10.1016/0003-682X(94)90091-4

Maeder, 2004, Lead free piezoelectric materials, J Electroceram, 13, 385, 10.1007/s10832-004-5130-y

Shrout, 2007, Lead-free piezoelectric ceramics: alternatives for PZT?, J Electroceram, 19, 113, 10.1007/s10832-007-9047-0

Takenaka, 2008, Current developments and prospective of lead-free piezoelectric ceramics, Jpn J Appl Phys, 47, 3787, 10.1143/JJAP.47.3787

Li, 2013, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J Am Ceram Soc, 96, 3677, 10.1111/jace.12715

Rödel, 2009, Perspective on the development of lead-free piezoceramics, J Am Ceram Soc, 92, 1153, 10.1111/j.1551-2916.2009.03061.x

Panda, 2009, Review: environmental friendly lead-free piezoelectric materials, J Mater Sci, 44, 5049, 10.1007/s10853-009-3643-0

Aksel, 2010, Advances in lead-free piezoelectric materials for sensors and actuators, Sensors, 10, 1935, 10.3390/s100301935

Coondoo, 2013, Lead-free piezoelectrics: current status and perspectives, J Adv Dielectr, 3, 1330002, 10.1142/S2010135X13300028

Shvartsman, 2012, Lead-free relaxor ferroelectrics, J Am Ceram Soc, 95, 1, 10.1111/j.1551-2916.2011.04952.x

Glaum, 2014, Electric fatigue of lead-free piezoelectric materials, J Am Ceram Soc, 97, 665, 10.1111/jace.12811

2012

Armiento, 2011, Screening for high-performance piezoelectrics using high-throughput density functional theory, Phys Rev B, 84, 014103, 10.1103/PhysRevB.84.014103

Levin, 2012, Nano- and mesoscale structure of Na1/2Bi1/2TiO3: a TEM perspective, Adv Funct Mater, 22, 3445, 10.1002/adfm.201200282

Dittmer, 2012, Nanoscale insight into lead-free BNT-BT-xKNN, Adv Funct Mater, 22, 4208, 10.1002/adfm.201200592

Guo, 2014, Unique single-domain state in a polycrystalline ferroelectric ceramic, Phys Rev B, 89, 014103, 10.1103/PhysRevB.90.014103

Jo, 2011, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics, J Appl Phys, 109, 014110, 10.1063/1.3530737

Ehmke, 2013, In situ X-ray diffraction of biased ferroelastic switching in tetragonal lead-free (1−x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectrics, J Am Ceram Soc, 96, 2913, 10.1111/jace.12424

Fenn, 2008

Goyer, 1993, Lead toxicity: current concerns, Environ Health Perspect, 100, 177, 10.1289/ehp.93100177

Lockitch, 1993, Perspectives on lead toxicity, Clin Biochem, 26, 371, 10.1016/0009-9120(93)90113-K

Patrick, 2006, Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment, Anglais, 11, 2

Gordon, 2002, Lead poisoning: case studies, Br J Clin Pharmacol, 53, 451, 10.1046/j.1365-2125.2002.01580.x

Takahashi, 1975, Problems of hygiene maintenance for food coming into contact with rubber and plastics products, Nippon Gomu Kyokaishi, 48, 537, 10.2324/gomu.48.537

Lilis, 1968, Nephropathy in chronic lead poisoning, Br J Ind Med, 25, 196

Perazella, 1996, Lead and the kidney: nephropathy, hypertension, and gout, Conn Med, 60, 521

Rom, 1980, Effects of lead on reproduction, 33

Apostoli, 2000, The effect of lead on male fertility: a time to pregnancy (TTP) study, Am J Ind Med, 38, 310, 10.1002/1097-0274(200009)38:3<310::AID-AJIM10>3.0.CO;2-9

United States Department of Labor - Occupational Safety & Health Administration, 1991

Canadian Centre for Occupational Health and Safety, 1995

Hardtl, 1969, PbO vapour pressure in Pb(Ti1−xZrx)O3 system, Solid State Commun, 7, 41, 10.1016/0038-1098(69)90688-7

Kosec, 1998, Effect of a chemically aggressive environment on the electromechanical behaviour of modified lead titanate ceramics, J Korean Phys Soc, 32, S1163-S6

Information about Electrical Components which contain Lead in a Glass or Ceramic Matrix Compound. 2004. http://ec.europa.eu/environment/waste/submissions/bosch3.pdf.

2009

Bierer, 1990, Bismuth subsalicylate: history, chemistry, and safety, Clin Infect Dis, 12, S3, 10.1093/clinids/12.Supplement_1.S3

2006, Official Journal of the European Union, L396, 1

European Chemicals Agency, 2012

2003, EU-Directive 2002/95/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), Off J Eur Union, 46, 19

2011, EU-Directive 2011/65/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), Off J Eur Union, 54, 88

2000, EU-Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles, Off J Eur Union, L269, 34

Kim, 2005, High-authority piezoelectric actuation system synthesis through mechanical resonance and electrical tailoring, J Intell Mater Syst Struct, 16, 21, 10.1177/1045389X05046686

Yabuta, 2012, Microstructure of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 piezoelectric ceramics, Jpn J Appl Phys, 51, 09LD4, 10.7567/JJAP.51.09LD04

World Mineral Statistics Electronic Archive: https://http://www.bgs.ac.uk/mineralsuk/statistics/worldArchive.html. British Geological Survey: Natural Environment Research Council.

Armitage, 2013

United States Environmental Protection Agency, 1972, Regulation of fuels and fuel additives-notice of proposed rulemaking, Fed Regist, 37, 3882

United States Environmental Protection Agency, 1996, Prohibition on gasoline containing lead or lead additives for highway use, Fed Regist, 61, 3832

1998, EU-Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC, Off J Eur Commun, L350, 58

Peter, 2011, Global benefits from the phaseout of leaded fuel, J Environ Health, 74, 8

United Nations Environment Programme, 2013

Abtew, 2000, Lead-free solders in microelectronics, Mater Sci Eng Rep, 27, 95, 10.1016/S0927-796X(00)00010-3

Suganuma, 2001, Advances in lead-free electronics soldering, Curr Opin Solid State Mater Sci, 5, 55, 10.1016/S1359-0286(00)00036-X

United States Environmental Protection Agency, 2005

Karl, 2004

Ministry of Commerce - People's Republic of China, 2006

Renken, 2009, High temperature electronics for future hybrid drive systems, 1

Crusd, 1998, Lead free solders in electronics

Campos Gonzalez, 2008, vol. 1458716, 90

Kumar, 2008, Lead content in household paints in India, Sci Total Environ, 407, 333, 10.1016/j.scitotenv.2008.08.038

United States Consumer Product Safety Commission, 1977

Mielke, 1999, Lead in the inner cities – policies to reduce children's exposure to lead may be overlooking a major source of lead in the environment, Am Sci, 87, 62, 10.1511/1999.1.62

Bodel, 2010

Hinton JW. Lead-free glaze for alumina bodies. Google Patents; 1978.

Minnesota Pollution Control Agency. Get the lead out!.

Thomas, 1997, Attitudes and issues preventing bans on toxic lead shot and sinkers in North America and Europe, Environmental Values, 6, 185, 10.3197/096327197776679176

Smith GR. White copper-base alloy. Google Patents; 2012.

La Fontaine, 2006, Compositional distributions in classical and lead-free brasses, Mater Charact, 57, 424, 10.1016/j.matchar.2006.02.005

Peters, 1997, New bismuth/selenium red boss alloys solve lead concerns, Mod Casting, 87, 57

Petro-Chem Industries. Extreme Pressure Grease (Lead Free).

World Health Organization, 1993

Taylor, 2009, Lead Toxicity and Climate Change

Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, Appl Phys Lett, 91, 112906, 10.1063/1.2783200

Liu, 2009, Large piezoelectric effect in Pb-free ceramics, Phys Rev Lett, 103, 257602, 10.1103/PhysRevLett.103.257602

Ditas, 2014

Tani, 1998, Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure, J Korean Phys Soc, 32, S1217

Cross, 2004, Materials science – lead-free at last, Nature, 432, 24, 10.1038/nature03142

Newnham, 2005

Pramanick, 2011, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading, J Am Ceram Soc, 94, 293, 10.1111/j.1551-2916.2010.04240.x

Kerkamm, 2009, Correlation of small- and large-signal properties of lead zirconate multilayer actuators, Acta Mater, 57, 77, 10.1016/j.actamat.2008.08.057

Jo, 2009, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics, J Appl Phys, 105, 094102, 10.1063/1.3121203

Groh, 2014, Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics, Adv Funct Mater, 24, 356, 10.1002/adfm.201302102

Wang, 2013, Temperature-Insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv Func Mater, 23, 4079, 10.1002/adfm.201203754

Hollenstein, 2005, Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics, Appl Phys Lett, 87, 182905, 10.1063/1.2123387

Matsubara, 2004, Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid, Jpn J Appl Phys, 43, 7159, 10.1143/JJAP.43.7159

Damjanovic, 2012, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3, Appl Phys Lett, 100, 192907, 10.1063/1.4714703

Ehmke, 2012, Phase coexistence and ferroelastic texture in high strain (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3, J Appl Phys, 111, 124110, 10.1063/1.4730342

Hao, 2012, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics, J Am Ceram Soc, 95, 1998, 10.1111/j.1551-2916.2012.05146.x

Brandt, 2014, Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics, J Appl Phys, 115, 204107, 10.1063/1.4879395

Dittmer, 2013, Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress, Acta Mater, 61, 1350, 10.1016/j.actamat.2012.11.012

Anton, 2011, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics, J Appl Phys, 110, 094108, 10.1063/1.3660253

Takenaka, 2005, Current status and prospects of lead-free piezoelectric ceramics, J Eur Ceram Soc, 25, 2693, 10.1016/j.jeurceramsoc.2005.03.125

Zhang, 2008, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics, J Am Ceram Soc, 91, 3950, 10.1111/j.1551-2916.2008.02778.x

Hiruma, 2008, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics, Appl Phys Lett, 92, 262904, 10.1063/1.2955533

Hiruma, 2008, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions, J Appl Phys, 104, 10.1063/1.3043588

Zhang, 2009, High-strain lead-free antiferroelectric electrostrictors, Adv Mater, 21, 4716, 10.1002/adma.200901516

Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties, J Appl Phys, 103, 034107, 10.1063/1.2838472

Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties, J Appl Phys, 103, 034108, 10.1063/1.2838476

Acosta, 2014, Temperature and frequency dependent properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 lead-free incipient piezoceramic, J Am Ceram Soc, 97, 1937, 10.1111/jace.12884

Malik, 2014, High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics, Appl Phys Express, 7, 061502, 10.7567/APEX.7.061502

Kungl, 2007, Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data, Acta Mater, 55, 1849, 10.1016/j.actamat.2006.10.046

Seo, 2014, Simultaneous enhancement of fracture toughness and unipolar strain in Pb(Zr,Ti)O3-ZrO2 composites through composition adjustment, J Am Ceram Soc, 97, 1582, 10.1111/jace.12929

Seo, 2013, Piezoelectric properties of lead-free piezoelectric ceramics and their energy harvester characteristics, J Am Ceram Soc, 96, 1024, 10.1111/jace.12227

Park, 2008, Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics, J Appl Phys, 104, 034103, 10.1063/1.2965197

Xue, 2011, Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary, J Appl Phys, 109, 054110, 10.1063/1.3549173

Tian, 2013, Phase transition behavior and electrical properties of lead-free (Ba1−xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics, J Appl Phys, 113, 184107, 10.1063/1.4804173

Taghaddos, 2014, Electromechanical properties of acceptor-doped lead-free piezoelectric ceramics, J Am Ceram Soc, 97, 1756, 10.1111/jace.12805

Hiruma, 2009, Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Ceram Int, 35, 117, 10.1016/j.ceramint.2007.10.023

Wang, 2004, Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics, Appl Phys Lett, 85, 91, 10.1063/1.1767592

Hiruma, 2009, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J Appl Phys, 105, 084112, 10.1063/1.3115409

Choy, 2006, 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 transducer for ultrasonic wirebonding applications, Appl Phys A, 84, 313, 10.1007/s00339-006-3625-x

Han, 2013, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J Appl Phys, 113, 154102, 10.1063/1.4801893

Xu, 2008, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics, Solid State Sci, 10, 934, 10.1016/j.solidstatesciences.2007.11.003

Hiruma, 2009, Detection of morphotropic phase boundary of (Bi1/2Na1/2)TiO3–Ba(Al1/2Sb1/2)O3 solid-solution ceramics, Appl Phys Lett, 95, 052903, 10.1063/1.3194146

Ullah, 2014, Electromechanical and microstructural study of (1−x) Bi0.5(Na0.40K0.10)TiO3-x(Ba0.70Sr0.30)TiO3 lead-free piezoelectric ceramics, J Electroceram, 33, 187, 10.1007/s10832-014-9945-x

Fett, 2002, Young's modulus of soft PZT from partial unloading test, Ferroelectrics, 274, 67, 10.1080/00150190213958

Piezoelectric Ceramic Products – Fundamentals, Characteristics and Applications. http://piceramic.com/products/piezoelectric-materials.html. PI Ceramics.

1997

Dittmer, 2013, Optimal working regime of lead–zirconate–titanate for actuation applications, Sens Actuators A: Phys, 189, 187, 10.1016/j.sna.2012.09.015

Senousy, 2009, Self-heat generation in piezoelectric stack actuators used in fuel injectors, Smart Mater Struct, 18, 045008, 10.1088/0964-1726/18/4/045008

Jaffe, 1971

Zhang, 2011, Piezoelectric materials for high temperature sensors, J Am Ceram Soc, 94, 3153, 10.1111/j.1551-2916.2011.04792.x

Priya, 2007, Advances in energy harvesting using low profile piezoelectric transducers, J Electroceram, 19, 165, 10.1007/s10832-007-9043-4

Bedekar, 2010, Design and fabrication of bimorph transducer for optimal vibration energy harvesting, IEEE Ultrason Freq Ferroelect Cntrl, 57, 1513, 10.1109/TUFFC.2010.1582

Shin, 2003, Fabrication and sensing behavior of piezoelectric microcantilever for nanobalance, Jpn J Appl Phys, 42, 6139, 10.1143/JJAP.42.6139

Viana, 2006, Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits, J Braz Soc Mech Sci Eng, 28, 293, 10.1590/S1678-58782006000300007

Zhang, 2005, Dielectric and piezoelectric properties of niobium-modified BiINO3-PbTiO3 perovskite ceramics with high Curie temperatures, J Mater Res, 20, 2067, 10.1557/JMR.2005.0254

Yan, 2009, Piezoelectric ceramics with super-high Curie points, J Am Ceram Soc, 92, 2270, 10.1111/j.1551-2916.2009.03209.x

Takeuchi, 1999, Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method, Jpn J Appl Phys, 38, 5553, 10.1143/JJAP.38.5553

Wang, 2009, Enhanced piezoelectric properties of sodium bismuth titanate (Na0.5Bi4.5Ti4O15) ceramics with B-site cobalt modification, Phys Status Solidi RRL, 3, 7, 10.1002/pssr.200802225

Kimura, 2007, Temperature dependence of piezoelectric properties for textured SrBi2Nb2O9 ceramics, IEEE Trans Ultrason Ferroelectr Freq Control, 54, 2482, 10.1109/TUFFC.2007.564

Li, 2008, Shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor, Jpn J Appl Phys, 47, 7702, 10.1143/JJAP.47.7702

Matsubara, 2005, Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics, J Am Ceram Soc, 88, 1190, 10.1111/j.1551-2916.2005.00229.x

Kawada, 2006, High-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 ceramics, Jpn J Appl Phys, 45, 7455, 10.1143/JJAP.45.7455

Wu, 2007, Piezoelectric properties of LiSBO3-Modified (K0.48Na0.52)NbO3 lead-free ceramics, Jpn J Appl Phys, 46, 7375, 10.1143/JJAP.46.7375

Wang, 2014, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics, J Am Chem Soc, 136, 2905, 10.1021/ja500076h

Tou, 2009, Properties of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free piezoelectric ceramics and its application to ultrasonic cleaner, Jpn J Appl Phys, 48, 07GM3, 10.1143/JJAP.48.07GM03

Shimizu, 2012, High-power piezoelectric characteristics of c-axis crystal-oriented (Sr, Ca)2NaNb5O15 ceramics, Jpn J Appl Phys, 51, 09LD02, 10.7567/JJAP.51.09LD02

Shimizu, 2010, Piezoelectric properties of c-axis-oriented (Sr,Ca)2NaNb5O15 piezoelectric ceramics with single-plate type and multilayered type fabricated using crystal-oriented sheet forming, Key Eng Mater, 421–422, 21

Tanaka, 2009, Thermal reliability of alkaline niobate-based lead-free piezoelectric ceramics, Jpn J Appl Phys, 48, 09KD08, 10.1143/JJAP.48.09KD08

Wang, 2009

Wang, 2012, Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics, J Am Ceram Soc, 95, 2241, 10.1111/j.1551-2916.2012.05162.x

Lines, 1977

Zushi, 2013, Formation of morphotropic phase boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics, Jpn J Appl Phys, 52, 07HB2, 10.7567/JJAP.52.07HB02

Holterman, 2012

Webber, 2014, Determination of the true operational range of a piezoelectric actuator, J Am Ceram Soc, 97, 2842, 10.1111/jace.13024

Gururaja, 1985, Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites, IEEE Trans Son Ultrason, 32, 481, 10.1109/T-SU.1985.31623

Kawada, 2009, (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes, Appl Phys Express, 2, 111401, 10.1143/APEX.2.111401

Cady, 1964

Berlincourt, 1964, Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition, J Phys Chem Solids, 25, 659, 10.1016/0022-3697(64)90175-1

Morozov, 2010, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening and softening, J Appl Phys, 107, 034106, 10.1063/1.3284954

Krueger, 1961, Effects of high static stress on the piezoelectric properties of transducer materials, J Acoust Soc Am, 33, 1339, 10.1121/1.1908435

Zhang, 1988, Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics, J Appl Phys, 64, 6445, 10.1063/1.342059

Krueger, 1967, Stress sensitivity of piezoelectric ceramics: Part. 1. Sensitivity to compressive stress parallel to the polar axis, J Acoust Soc Am, 42, 636, 10.1121/1.1910635

Cook, 1963, Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate, J Appl Phys, 34, 1392, 10.1063/1.1729587

Takenaka, 1985, Piezoelectric properties of bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 ceramic, Jpn J App Phys, 24, 730, 10.7567/JJAPS.24S2.730

Vinogradov, 1999, Electro-mechanical properties of the piezoelectric polymer PVDF, Ferroelectrics, 226, 169, 10.1080/00150199908230298

Kari, 2000, Investigation of potassium niobate as an ultrasonic transducer material, Proc IEEE Ultrason Sym, 2, 1065

Nakamura, 2000, Orientation dependence of electromechanical coupling factors in KNbO3, IEEE Trans Ultrason Ferroelec Freq Control, 47, 750, 10.1109/58.842064

Davis, 2007, Large and stable thickness coupling coefficients of [001]c-oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals, Appl Phys Lett, 90, 062904, 10.1063/1.2472524

Bantignies, 2013, Lead-free high-frequency linear-array transducer (30MHz) for in vivo skin imaging, IEEE Int Ultrason Sym, 785

Electronic, 2008

Hiruma, 2008, Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power applications, Jpn J Appl Phys, 47, 7659, 10.1143/JJAP.47.7659

Nagata, 2011, High-power piezoelectric characteristics of nontextured bismuth layer-structured ferroelectric ceramics, Jpn J Appl Phys, 50, 09ND5, 10.1143/JJAP.50.09ND05

Doshida, 2013, Investigation of high-power properties of (Bi,Na,Ba)TiO3 and (Sr,Ca)2NaNb5O15 piezoelectric ceramics, Jpn J Appl Phys, 52, 07HE01, 10.7567/JJAP.52.07HE01

Randall, 2005, High strain piezoelectric multilayer actuators – a material science and engineering challenge, J Electroceram, 14, 177, 10.1007/s10832-005-0956-5

Hollenstein, 2007, Temperature stability of the piezoelectric properties of Li-modified KNN ceramics, J Eur Ceram Soc, 27, 4093, 10.1016/j.jeurceramsoc.2007.02.100

Davis, 2007, Large and stable thickness coupling coefficients of [001]C oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals, Appl Phys Lett, 90, 062904, 10.1063/1.2472524

Zhang, 2008, Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics, Appl Phys Lett, 92, 152904, 10.1063/1.2908960

Chang, 2011, Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics, J Am Ceram Soc, 94, 2494, 10.1111/j.1551-2916.2011.04393.x

Acosta, 2014, Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic, Acta Mater, 80, 48, 10.1016/j.actamat.2014.07.058

Masys, 2003, Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias, J Appl Phys, 94, 1155, 10.1063/1.1587008

Zhou, 2013, High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-modified (Li, K, Na)(Nb,Ta)O3 lead-free piezoceramics, J Am Ceram Soc, 96, 519, 10.1111/jace.12061

Dittmer, 2013, Frequency-dependence of large-signal properties in lead-free piezoceramics, J Appl Phys, 112, 014101, 10.1063/1.4730600

Glaum, 2011, Temperature and driving field dependence of fatigue processes in PZT bulk ceramics, Acta Mater, 59, 6083, 10.1016/j.actamat.2011.06.017

Wang, 2009, Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload, J Appl Phys, 105, 014112, 10.1063/1.3065097

Sapper, 2014, Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics, J Eur Ceram Soc, 34, 653, 10.1016/j.jeurceramsoc.2013.09.006

Webber, 2010, High temperature blocking force measurements of soft lead zirconate titanate, J Phys D Appl Phys, 43, 365401, 10.1088/0022-3727/43/36/365401

Dittmer, 2012, Large blocking force in Bi1/2Na1/2TiO3-based lead-free piezoceramics, Scr Mater, 67, 100, 10.1016/j.scriptamat.2012.03.031

Haertling, 1994, Rainbow ceramics – a new type of ultra-high-dispalcement actuator, Am Ceram Soc Bull, 73, 93

Mulling, 2001, Load characterization of high displacement piezoelectric actuators with various end conditions, Sens Actuators A, 94, 19, 10.1016/S0924-4247(01)00688-4

Qiu, 2003, Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart Mater Struct, 12, 115, 10.1088/0964-1726/12/1/313

Woo, 2007, Prediction of actuating displacement in a piezoelectric composite actuator with a thin sandwiched PZT plate by a finite element simulation, J Mater Sci Technol, 21, 455

Arlt, 1988, Internal bias in ferroelectric ceramics – origin and time-dependence, Ferroelectrics, 87, 109, 10.1080/00150198808201374

Genenko, 2009, Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries, Phys Rev B, 80, 224109, 10.1103/PhysRevB.80.224109

Zhu, 2007, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics, J Am Ceram Soc, 90, 120, 10.1111/j.1551-2916.2006.01349.x

Taghaddos, 2014, Electromechanical properties of acceptor-doped lead-free piezoelectric ceramics, J Am Ceram Soc, 96, 1756, 10.1111/jace.12805

Li, 2008, Enhancement of Qm by Co-doping of Li and Cu to potassium sodium niobate lead-free ceramics, IEEE Trans Ultrason Ferroelectr Freq Control, 55, 980, 10.1109/TUFFC.2008.743

Schneider, 2007, Influence of electric field and mechanical stresses on the fracture of ferroelectrics, Annu Rev Mater Res, 37, 491, 10.1146/annurev.matsci.37.052506.084213

Kamlah, 2001, Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior, Int J Solids Struc, 38, 605, 10.1016/S0020-7683(00)00055-X

Furuta, 1993, Dynamic observation of crack-propagation in piezoelectric multilayer actuators, J Am Ceram Soc, 76, 1615, 10.1111/j.1151-2916.1993.tb03950.x

Lucato, 2001, Constraint-induced crack initiation at electrode edges in piezoelectric ceramics, Acta Mater, 49, 2751, 10.1016/S1359-6454(01)00169-0

Yilmaz, 2012, Investigation of fracture toughness of modified (KxNa1−x)NbO3 lead-free piezoelectric ceramics, J Eur Ceram Soc, 32, 3339, 10.1016/j.jeurceramsoc.2012.04.005

Zhang, 2010, Effect of humidity and hydrogen on the promotion of indentation crack growth in lead-free ferroelectric ceramics, Mater Sci Eng B, 167, 147, 10.1016/j.mseb.2010.01.048

Jin, 2004, Influence of dispersed coarse grains on mechanical and piezoelectric properties in (Bi1/2Na1/2)TiO3 ceramics, Mater Lett, 58, 1701, 10.1016/j.matlet.2003.10.061

Malič, 2008, Lead-free piezoelectrics based on alkaline niobates: synthesis, sintering and microstructure, Acta Chim Slov, 55, 719

Hagh, 2007, Processing-property relationship in lead free KNN-solid solution system, J Electroceram, 18, 339, 10.1007/s10832-007-9171-x

Malic, 2008, Synthesis of sodium potassium niobate: a diffusion couples study, J Am Ceram Soc, 91, 1916, 10.1111/j.1551-2916.2008.02376.x

Konig, 2009, The thermal decomposition of K0.5Bi0.5TiO3 ceramics, J Eur Ceram Soc, 29, 1695, 10.1016/j.jeurceramsoc.2008.10.002

Popovič, 2012, Knudsen effusion mass spectrometric approach to the thermodynamics of Na2O-Nb2O5 system, Int J Mass Spectrometry, 309, 70, 10.1016/j.ijms.2011.08.028

Koruza, 2014, Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates, J Eur Ceram Soc, 34, 1971, 10.1016/j.jeurceramsoc.2014.01.035

Hiruma, 2007, Grain-size effect on electrical properties of (Bi1/2K1/2)TiO3 ceramics, Jpn J Appl Phys, 46, 1081, 10.1143/JJAP.46.1081

Hao, 2012, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics, J Am Ceram Soc, 95, 1998, 10.1111/j.1551-2916.2012.05146.x

Schuetz, 2010, The chemical interaction of silver-palladium alloy electrodes with bismuth-based piezomaterials, J Am Ceram Soc, 93, 1142, 10.1111/j.1551-2916.2009.03568.x

Krauss, 2011, BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process, J Eur Ceram Soc, 31, 1857, 10.1016/j.jeurceramsoc.2011.02.032

Kim, 2009, Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator, J Electroceram, 23, 372, 10.1007/s10832-008-9470-x

Kobayashi, 2013, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn J Appl Phys, 52, 09KD07, 10.7567/JJAP.52.09KD07

Chan, 1982, Nonstoichetry in acceptor-doped BaTiO3, J Am Ceram Soc, 65, 167, 10.1111/j.1151-2916.1982.tb10388.x

Chazono, 2001, DC-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure, Jpn J Appl Phys, 40, 5624, 10.1143/JJAP.40.5624

Zang, 2014, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3, J Am Ceram Soc, 97, 1523, 10.1111/jace.12804

Eichel, 2008, J Am Ceram Soc, 91, 691, 10.1111/j.1551-2916.2008.02303.x

Eichel, 2008, Defect-dipole formation in copper-doped PbTiO3 ferroelectrics, Phys Rev Lett, 100, 095504, 10.1103/PhysRevLett.100.095504

Aksel, 2010, Defect structure and materials “hardening” in Fe2O3-doped (Bi0.5Na0.5)TiO3 ferroelectrics, Appl Phys Lett, 97, 012903, 10.1063/1.3455888

Blinc, 2000, NMR and the spherical random bond–random field model of relaxor ferroelectrics, J Phys Chem Solids, 61, 177, 10.1016/S0022-3697(99)00279-6

Aleksandrova, 2006, 23Na NMR in the relaxor ferroelectric Na1/2Bi1/2TiO3, Phys Solid State, 48, 1120, 10.1134/S106378340606031X

Aksel, 2012, Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature, Phys Rev B, 85, 024121, 10.1103/PhysRevB.85.024121

Hohenberg, 1964, Inhomogeneous electron gas, Phys Rev, 136, B864-B71, 10.1103/PhysRev.136.B864

Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys Rev, 140, A1133, 10.1103/PhysRev.140.A1133

King-Smith, 1993, Theory of polarization of crystalline solids, Phys Rev B, 47, 1651, 10.1103/PhysRevB.47.1651

Resta, 1992, Theory of the electric polarization in crystals, Ferroelectrics, 136, 51, 10.1080/00150199208016065

Vanderbilt, 1993, Electric polarization as a bulk quantity and its relation to surface-charge, Phys Rev B, 48, 4442, 10.1103/PhysRevB.48.4442

Körbel, 2010, Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions, Phys Rev B, 81, 174115, 10.1103/PhysRevB.81.174115

Lu, 2010, Ferroelectric polarization and domain walls in orthorhombic (K1−xNax)NbO3 lead-free ferroelectric ceramics, Appl Phys Lett, 96, 221905, 10.1063/1.3442905

Suewattana, 2010, Local dynamics and structure of pure and Ta substituted (K1−xNax)NbO3 from first principles calculations, Phys Rev B, 82, 014114, 10.1103/PhysRevB.82.014114

Gröting, 2014, Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures, Phys Rev B, 89, 054105, 10.1103/PhysRevB.89.054105

Gröting, 2011, Chemical order and local structure of the lead-free relaxor ferroelectric Na1/2Bi1/2TiO3, J Solid State Chem, 184, 2041, 10.1016/j.jssc.2011.05.044

Zeng, 2010, First-principles study on the electronic and optical properties of Na0.5Bi0.5TiO3 lead-free piezoelectric crystal, J Appl Phys, 107, 043513, 10.1063/1.3309407

Baettig, 2005, Theoretical prediction of new high-performance lead-free piezoelectrics, Chem Mater, 17, 1376, 10.1021/cm0480418

Miura, 2010, First-principles study of structural trend of BiMO3 and BaMO3: relationship between tetragonal or rhombohedral structure and the tolerance factors, Jpn J Appl Phys, 49, 031501, 10.1143/JJAP.49.031501

Armiento, 2014, High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability, Phys Rev B, 89, 134103, 10.1103/PhysRevB.89.134103

Bennett, 2012, Hexagonal ABC semiconductors as ferroelectrics, Phys Rev Lett, 109, 167602, 10.1103/PhysRevLett.109.167602

Bennett, 2012, Integration of first-principles methods and crystallographic database searches for new ferroelectrics: strategies and explorations, J Solid State Chem, 195, 21, 10.1016/j.jssc.2012.05.013

Zhong, 1995, First-principles theory of ferroelectric phase-transitions for perovskites – the case of BaTiO3, Phys Rev B, 52, 6301, 10.1103/PhysRevB.52.6301

Akbarzadeh, 2012, Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles, Phys Rev Lett, 108, 257601, 10.1103/PhysRevLett.108.257601

Burton, 2007, First principles phase diagram calculations for the system NaNbO3-KNbO3: can spinodal decomposition generate relaxor ferroelectricity?, Appl Phys Lett, 91, 092907, 10.1063/1.2775308

Sapper, 2014, Electric-field – temperature phase diagram of the ferroelectric relaxor system (1−x)Bi1/2Na1/2TiO3−xBaTiO3 doped with manganese, J Appl Phys, 115, 194104, 10.1063/1.4876746

Daniels, 2009, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 piezoelectric ceramic, Appl Phys Lett, 95, 032904, 10.1063/1.3182679

Hinterstein, 2010, Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics, J Appl Crys, 43, 1314, 10.1107/S0021889810038264

Kling, 2010, In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics, J Am Ceram Soc, 93, 2452, 10.1111/j.1551-2916.2010.03778.x

Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free piezoelectrics, Phys Rev Lett, 109, 107602, 10.1103/PhysRevLett.109.107602

Tutuncu, 2014, Domain wall motion and electromechanical strain in lead-free piezoelectrics: insight from the model system (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in situ highenergy X-ray diffraction during application of electric fields, J Appl Phys, 115, 144104, 10.1063/1.4870934