Transferring lead-free piezoelectric ceramics into application
Tóm tắt
Từ khóa
Tài liệu tham khảo
2013, EU-Commision Directive 2013/28/EU of 17 May 2013 amending annex II to directive 2000/53/EC of the European Parliament and of the Council on end-of-life vehicles, Off J Eur Union, L135, 14
1989, Off J Eur Commun, L398, 19
2000, Official Journal of the European Communities, L287, 46
Jo, 2012, Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective, J Electroceram, 29, 71, 10.1007/s10832-012-9742-3
Takenaka, 1991, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn J Appl Phys Part 1, 30, 2236, 10.1143/JJAP.30.2236
Turner, 1994, Materials for high temperature acoustic and vibration sensors: a review, Appl Acoust, 41, 299, 10.1016/0003-682X(94)90091-4
Shrout, 2007, Lead-free piezoelectric ceramics: alternatives for PZT?, J Electroceram, 19, 113, 10.1007/s10832-007-9047-0
Takenaka, 2008, Current developments and prospective of lead-free piezoelectric ceramics, Jpn J Appl Phys, 47, 3787, 10.1143/JJAP.47.3787
Li, 2013, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J Am Ceram Soc, 96, 3677, 10.1111/jace.12715
Rödel, 2009, Perspective on the development of lead-free piezoceramics, J Am Ceram Soc, 92, 1153, 10.1111/j.1551-2916.2009.03061.x
Panda, 2009, Review: environmental friendly lead-free piezoelectric materials, J Mater Sci, 44, 5049, 10.1007/s10853-009-3643-0
Aksel, 2010, Advances in lead-free piezoelectric materials for sensors and actuators, Sensors, 10, 1935, 10.3390/s100301935
Coondoo, 2013, Lead-free piezoelectrics: current status and perspectives, J Adv Dielectr, 3, 1330002, 10.1142/S2010135X13300028
Shvartsman, 2012, Lead-free relaxor ferroelectrics, J Am Ceram Soc, 95, 1, 10.1111/j.1551-2916.2011.04952.x
Glaum, 2014, Electric fatigue of lead-free piezoelectric materials, J Am Ceram Soc, 97, 665, 10.1111/jace.12811
2012
Armiento, 2011, Screening for high-performance piezoelectrics using high-throughput density functional theory, Phys Rev B, 84, 014103, 10.1103/PhysRevB.84.014103
Levin, 2012, Nano- and mesoscale structure of Na1/2Bi1/2TiO3: a TEM perspective, Adv Funct Mater, 22, 3445, 10.1002/adfm.201200282
Dittmer, 2012, Nanoscale insight into lead-free BNT-BT-xKNN, Adv Funct Mater, 22, 4208, 10.1002/adfm.201200592
Guo, 2014, Unique single-domain state in a polycrystalline ferroelectric ceramic, Phys Rev B, 89, 014103, 10.1103/PhysRevB.90.014103
Jo, 2011, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics, J Appl Phys, 109, 014110, 10.1063/1.3530737
Ehmke, 2013, In situ X-ray diffraction of biased ferroelastic switching in tetragonal lead-free (1−x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectrics, J Am Ceram Soc, 96, 2913, 10.1111/jace.12424
Fenn, 2008
Goyer, 1993, Lead toxicity: current concerns, Environ Health Perspect, 100, 177, 10.1289/ehp.93100177
Patrick, 2006, Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment, Anglais, 11, 2
Gordon, 2002, Lead poisoning: case studies, Br J Clin Pharmacol, 53, 451, 10.1046/j.1365-2125.2002.01580.x
Takahashi, 1975, Problems of hygiene maintenance for food coming into contact with rubber and plastics products, Nippon Gomu Kyokaishi, 48, 537, 10.2324/gomu.48.537
Lilis, 1968, Nephropathy in chronic lead poisoning, Br J Ind Med, 25, 196
Perazella, 1996, Lead and the kidney: nephropathy, hypertension, and gout, Conn Med, 60, 521
Rom, 1980, Effects of lead on reproduction, 33
Apostoli, 2000, The effect of lead on male fertility: a time to pregnancy (TTP) study, Am J Ind Med, 38, 310, 10.1002/1097-0274(200009)38:3<310::AID-AJIM10>3.0.CO;2-9
United States Department of Labor - Occupational Safety & Health Administration, 1991
Canadian Centre for Occupational Health and Safety, 1995
Hardtl, 1969, PbO vapour pressure in Pb(Ti1−xZrx)O3 system, Solid State Commun, 7, 41, 10.1016/0038-1098(69)90688-7
Kosec, 1998, Effect of a chemically aggressive environment on the electromechanical behaviour of modified lead titanate ceramics, J Korean Phys Soc, 32, S1163-S6
Information about Electrical Components which contain Lead in a Glass or Ceramic Matrix Compound. 2004. http://ec.europa.eu/environment/waste/submissions/bosch3.pdf.
2009
Bierer, 1990, Bismuth subsalicylate: history, chemistry, and safety, Clin Infect Dis, 12, S3, 10.1093/clinids/12.Supplement_1.S3
2006, Official Journal of the European Union, L396, 1
European Chemicals Agency, 2012
2003, EU-Directive 2002/95/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), Off J Eur Union, 46, 19
2011, EU-Directive 2011/65/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), Off J Eur Union, 54, 88
2000, EU-Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles, Off J Eur Union, L269, 34
Kim, 2005, High-authority piezoelectric actuation system synthesis through mechanical resonance and electrical tailoring, J Intell Mater Syst Struct, 16, 21, 10.1177/1045389X05046686
Yabuta, 2012, Microstructure of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 piezoelectric ceramics, Jpn J Appl Phys, 51, 09LD4, 10.7567/JJAP.51.09LD04
World Mineral Statistics Electronic Archive: https://http://www.bgs.ac.uk/mineralsuk/statistics/worldArchive.html. British Geological Survey: Natural Environment Research Council.
Armitage, 2013
United States Environmental Protection Agency, 1972, Regulation of fuels and fuel additives-notice of proposed rulemaking, Fed Regist, 37, 3882
United States Environmental Protection Agency, 1996, Prohibition on gasoline containing lead or lead additives for highway use, Fed Regist, 61, 3832
1998, EU-Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC, Off J Eur Commun, L350, 58
Peter, 2011, Global benefits from the phaseout of leaded fuel, J Environ Health, 74, 8
United Nations Environment Programme, 2013
Abtew, 2000, Lead-free solders in microelectronics, Mater Sci Eng Rep, 27, 95, 10.1016/S0927-796X(00)00010-3
Suganuma, 2001, Advances in lead-free electronics soldering, Curr Opin Solid State Mater Sci, 5, 55, 10.1016/S1359-0286(00)00036-X
United States Environmental Protection Agency, 2005
Karl, 2004
Ministry of Commerce - People's Republic of China, 2006
Renken, 2009, High temperature electronics for future hybrid drive systems, 1
Crusd, 1998, Lead free solders in electronics
Campos Gonzalez, 2008, vol. 1458716, 90
Kumar, 2008, Lead content in household paints in India, Sci Total Environ, 407, 333, 10.1016/j.scitotenv.2008.08.038
United States Consumer Product Safety Commission, 1977
Mielke, 1999, Lead in the inner cities – policies to reduce children's exposure to lead may be overlooking a major source of lead in the environment, Am Sci, 87, 62, 10.1511/1999.1.62
Bodel, 2010
Hinton JW. Lead-free glaze for alumina bodies. Google Patents; 1978.
Minnesota Pollution Control Agency. Get the lead out!.
Thomas, 1997, Attitudes and issues preventing bans on toxic lead shot and sinkers in North America and Europe, Environmental Values, 6, 185, 10.3197/096327197776679176
Smith GR. White copper-base alloy. Google Patents; 2012.
La Fontaine, 2006, Compositional distributions in classical and lead-free brasses, Mater Charact, 57, 424, 10.1016/j.matchar.2006.02.005
Peters, 1997, New bismuth/selenium red boss alloys solve lead concerns, Mod Casting, 87, 57
Petro-Chem Industries. Extreme Pressure Grease (Lead Free).
World Health Organization, 1993
Taylor, 2009, Lead Toxicity and Climate Change
Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, Appl Phys Lett, 91, 112906, 10.1063/1.2783200
Liu, 2009, Large piezoelectric effect in Pb-free ceramics, Phys Rev Lett, 103, 257602, 10.1103/PhysRevLett.103.257602
Ditas, 2014
Tani, 1998, Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure, J Korean Phys Soc, 32, S1217
Newnham, 2005
Pramanick, 2011, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading, J Am Ceram Soc, 94, 293, 10.1111/j.1551-2916.2010.04240.x
Kerkamm, 2009, Correlation of small- and large-signal properties of lead zirconate multilayer actuators, Acta Mater, 57, 77, 10.1016/j.actamat.2008.08.057
Jo, 2009, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics, J Appl Phys, 105, 094102, 10.1063/1.3121203
Groh, 2014, Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics, Adv Funct Mater, 24, 356, 10.1002/adfm.201302102
Wang, 2013, Temperature-Insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv Func Mater, 23, 4079, 10.1002/adfm.201203754
Hollenstein, 2005, Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics, Appl Phys Lett, 87, 182905, 10.1063/1.2123387
Matsubara, 2004, Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid, Jpn J Appl Phys, 43, 7159, 10.1143/JJAP.43.7159
Damjanovic, 2012, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3, Appl Phys Lett, 100, 192907, 10.1063/1.4714703
Ehmke, 2012, Phase coexistence and ferroelastic texture in high strain (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3, J Appl Phys, 111, 124110, 10.1063/1.4730342
Hao, 2012, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics, J Am Ceram Soc, 95, 1998, 10.1111/j.1551-2916.2012.05146.x
Brandt, 2014, Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics, J Appl Phys, 115, 204107, 10.1063/1.4879395
Dittmer, 2013, Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress, Acta Mater, 61, 1350, 10.1016/j.actamat.2012.11.012
Anton, 2011, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics, J Appl Phys, 110, 094108, 10.1063/1.3660253
Takenaka, 2005, Current status and prospects of lead-free piezoelectric ceramics, J Eur Ceram Soc, 25, 2693, 10.1016/j.jeurceramsoc.2005.03.125
Zhang, 2008, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics, J Am Ceram Soc, 91, 3950, 10.1111/j.1551-2916.2008.02778.x
Hiruma, 2008, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics, Appl Phys Lett, 92, 262904, 10.1063/1.2955533
Hiruma, 2008, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions, J Appl Phys, 104, 10.1063/1.3043588
Zhang, 2009, High-strain lead-free antiferroelectric electrostrictors, Adv Mater, 21, 4716, 10.1002/adma.200901516
Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties, J Appl Phys, 103, 034107, 10.1063/1.2838472
Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties, J Appl Phys, 103, 034108, 10.1063/1.2838476
Acosta, 2014, Temperature and frequency dependent properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 lead-free incipient piezoceramic, J Am Ceram Soc, 97, 1937, 10.1111/jace.12884
Malik, 2014, High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics, Appl Phys Express, 7, 061502, 10.7567/APEX.7.061502
Kungl, 2007, Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data, Acta Mater, 55, 1849, 10.1016/j.actamat.2006.10.046
Seo, 2014, Simultaneous enhancement of fracture toughness and unipolar strain in Pb(Zr,Ti)O3-ZrO2 composites through composition adjustment, J Am Ceram Soc, 97, 1582, 10.1111/jace.12929
Seo, 2013, Piezoelectric properties of lead-free piezoelectric ceramics and their energy harvester characteristics, J Am Ceram Soc, 96, 1024, 10.1111/jace.12227
Park, 2008, Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics, J Appl Phys, 104, 034103, 10.1063/1.2965197
Xue, 2011, Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary, J Appl Phys, 109, 054110, 10.1063/1.3549173
Tian, 2013, Phase transition behavior and electrical properties of lead-free (Ba1−xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics, J Appl Phys, 113, 184107, 10.1063/1.4804173
Taghaddos, 2014, Electromechanical properties of acceptor-doped lead-free piezoelectric ceramics, J Am Ceram Soc, 97, 1756, 10.1111/jace.12805
Hiruma, 2009, Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Ceram Int, 35, 117, 10.1016/j.ceramint.2007.10.023
Wang, 2004, Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics, Appl Phys Lett, 85, 91, 10.1063/1.1767592
Hiruma, 2009, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J Appl Phys, 105, 084112, 10.1063/1.3115409
Choy, 2006, 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 transducer for ultrasonic wirebonding applications, Appl Phys A, 84, 313, 10.1007/s00339-006-3625-x
Han, 2013, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J Appl Phys, 113, 154102, 10.1063/1.4801893
Xu, 2008, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics, Solid State Sci, 10, 934, 10.1016/j.solidstatesciences.2007.11.003
Hiruma, 2009, Detection of morphotropic phase boundary of (Bi1/2Na1/2)TiO3–Ba(Al1/2Sb1/2)O3 solid-solution ceramics, Appl Phys Lett, 95, 052903, 10.1063/1.3194146
Ullah, 2014, Electromechanical and microstructural study of (1−x) Bi0.5(Na0.40K0.10)TiO3-x(Ba0.70Sr0.30)TiO3 lead-free piezoelectric ceramics, J Electroceram, 33, 187, 10.1007/s10832-014-9945-x
Fett, 2002, Young's modulus of soft PZT from partial unloading test, Ferroelectrics, 274, 67, 10.1080/00150190213958
Piezoelectric Ceramic Products – Fundamentals, Characteristics and Applications. http://piceramic.com/products/piezoelectric-materials.html. PI Ceramics.
1997
Dittmer, 2013, Optimal working regime of lead–zirconate–titanate for actuation applications, Sens Actuators A: Phys, 189, 187, 10.1016/j.sna.2012.09.015
Senousy, 2009, Self-heat generation in piezoelectric stack actuators used in fuel injectors, Smart Mater Struct, 18, 045008, 10.1088/0964-1726/18/4/045008
Jaffe, 1971
Zhang, 2011, Piezoelectric materials for high temperature sensors, J Am Ceram Soc, 94, 3153, 10.1111/j.1551-2916.2011.04792.x
Priya, 2007, Advances in energy harvesting using low profile piezoelectric transducers, J Electroceram, 19, 165, 10.1007/s10832-007-9043-4
Bedekar, 2010, Design and fabrication of bimorph transducer for optimal vibration energy harvesting, IEEE Ultrason Freq Ferroelect Cntrl, 57, 1513, 10.1109/TUFFC.2010.1582
Shin, 2003, Fabrication and sensing behavior of piezoelectric microcantilever for nanobalance, Jpn J Appl Phys, 42, 6139, 10.1143/JJAP.42.6139
Viana, 2006, Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits, J Braz Soc Mech Sci Eng, 28, 293, 10.1590/S1678-58782006000300007
Zhang, 2005, Dielectric and piezoelectric properties of niobium-modified BiINO3-PbTiO3 perovskite ceramics with high Curie temperatures, J Mater Res, 20, 2067, 10.1557/JMR.2005.0254
Yan, 2009, Piezoelectric ceramics with super-high Curie points, J Am Ceram Soc, 92, 2270, 10.1111/j.1551-2916.2009.03209.x
Takeuchi, 1999, Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method, Jpn J Appl Phys, 38, 5553, 10.1143/JJAP.38.5553
Wang, 2009, Enhanced piezoelectric properties of sodium bismuth titanate (Na0.5Bi4.5Ti4O15) ceramics with B-site cobalt modification, Phys Status Solidi RRL, 3, 7, 10.1002/pssr.200802225
Kimura, 2007, Temperature dependence of piezoelectric properties for textured SrBi2Nb2O9 ceramics, IEEE Trans Ultrason Ferroelectr Freq Control, 54, 2482, 10.1109/TUFFC.2007.564
Li, 2008, Shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor, Jpn J Appl Phys, 47, 7702, 10.1143/JJAP.47.7702
Matsubara, 2005, Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics, J Am Ceram Soc, 88, 1190, 10.1111/j.1551-2916.2005.00229.x
Kawada, 2006, High-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 ceramics, Jpn J Appl Phys, 45, 7455, 10.1143/JJAP.45.7455
Wu, 2007, Piezoelectric properties of LiSBO3-Modified (K0.48Na0.52)NbO3 lead-free ceramics, Jpn J Appl Phys, 46, 7375, 10.1143/JJAP.46.7375
Wang, 2014, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics, J Am Chem Soc, 136, 2905, 10.1021/ja500076h
Tou, 2009, Properties of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free piezoelectric ceramics and its application to ultrasonic cleaner, Jpn J Appl Phys, 48, 07GM3, 10.1143/JJAP.48.07GM03
Shimizu, 2012, High-power piezoelectric characteristics of c-axis crystal-oriented (Sr, Ca)2NaNb5O15 ceramics, Jpn J Appl Phys, 51, 09LD02, 10.7567/JJAP.51.09LD02
Shimizu, 2010, Piezoelectric properties of c-axis-oriented (Sr,Ca)2NaNb5O15 piezoelectric ceramics with single-plate type and multilayered type fabricated using crystal-oriented sheet forming, Key Eng Mater, 421–422, 21
Tanaka, 2009, Thermal reliability of alkaline niobate-based lead-free piezoelectric ceramics, Jpn J Appl Phys, 48, 09KD08, 10.1143/JJAP.48.09KD08
Wang, 2009
Wang, 2012, Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics, J Am Ceram Soc, 95, 2241, 10.1111/j.1551-2916.2012.05162.x
Lines, 1977
Zushi, 2013, Formation of morphotropic phase boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics, Jpn J Appl Phys, 52, 07HB2, 10.7567/JJAP.52.07HB02
Holterman, 2012
Webber, 2014, Determination of the true operational range of a piezoelectric actuator, J Am Ceram Soc, 97, 2842, 10.1111/jace.13024
Gururaja, 1985, Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites, IEEE Trans Son Ultrason, 32, 481, 10.1109/T-SU.1985.31623
Kawada, 2009, (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes, Appl Phys Express, 2, 111401, 10.1143/APEX.2.111401
Cady, 1964
Berlincourt, 1964, Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition, J Phys Chem Solids, 25, 659, 10.1016/0022-3697(64)90175-1
Morozov, 2010, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening and softening, J Appl Phys, 107, 034106, 10.1063/1.3284954
Krueger, 1961, Effects of high static stress on the piezoelectric properties of transducer materials, J Acoust Soc Am, 33, 1339, 10.1121/1.1908435
Zhang, 1988, Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics, J Appl Phys, 64, 6445, 10.1063/1.342059
Krueger, 1967, Stress sensitivity of piezoelectric ceramics: Part. 1. Sensitivity to compressive stress parallel to the polar axis, J Acoust Soc Am, 42, 636, 10.1121/1.1910635
Cook, 1963, Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate, J Appl Phys, 34, 1392, 10.1063/1.1729587
Takenaka, 1985, Piezoelectric properties of bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 ceramic, Jpn J App Phys, 24, 730, 10.7567/JJAPS.24S2.730
Vinogradov, 1999, Electro-mechanical properties of the piezoelectric polymer PVDF, Ferroelectrics, 226, 169, 10.1080/00150199908230298
Kari, 2000, Investigation of potassium niobate as an ultrasonic transducer material, Proc IEEE Ultrason Sym, 2, 1065
Nakamura, 2000, Orientation dependence of electromechanical coupling factors in KNbO3, IEEE Trans Ultrason Ferroelec Freq Control, 47, 750, 10.1109/58.842064
Davis, 2007, Large and stable thickness coupling coefficients of [001]c-oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals, Appl Phys Lett, 90, 062904, 10.1063/1.2472524
Bantignies, 2013, Lead-free high-frequency linear-array transducer (30MHz) for in vivo skin imaging, IEEE Int Ultrason Sym, 785
Electronic, 2008
Hiruma, 2008, Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power applications, Jpn J Appl Phys, 47, 7659, 10.1143/JJAP.47.7659
Nagata, 2011, High-power piezoelectric characteristics of nontextured bismuth layer-structured ferroelectric ceramics, Jpn J Appl Phys, 50, 09ND5, 10.1143/JJAP.50.09ND05
Doshida, 2013, Investigation of high-power properties of (Bi,Na,Ba)TiO3 and (Sr,Ca)2NaNb5O15 piezoelectric ceramics, Jpn J Appl Phys, 52, 07HE01, 10.7567/JJAP.52.07HE01
Randall, 2005, High strain piezoelectric multilayer actuators – a material science and engineering challenge, J Electroceram, 14, 177, 10.1007/s10832-005-0956-5
Hollenstein, 2007, Temperature stability of the piezoelectric properties of Li-modified KNN ceramics, J Eur Ceram Soc, 27, 4093, 10.1016/j.jeurceramsoc.2007.02.100
Davis, 2007, Large and stable thickness coupling coefficients of [001]C oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals, Appl Phys Lett, 90, 062904, 10.1063/1.2472524
Zhang, 2008, Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics, Appl Phys Lett, 92, 152904, 10.1063/1.2908960
Chang, 2011, Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics, J Am Ceram Soc, 94, 2494, 10.1111/j.1551-2916.2011.04393.x
Acosta, 2014, Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic, Acta Mater, 80, 48, 10.1016/j.actamat.2014.07.058
Masys, 2003, Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias, J Appl Phys, 94, 1155, 10.1063/1.1587008
Zhou, 2013, High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-modified (Li, K, Na)(Nb,Ta)O3 lead-free piezoceramics, J Am Ceram Soc, 96, 519, 10.1111/jace.12061
Dittmer, 2013, Frequency-dependence of large-signal properties in lead-free piezoceramics, J Appl Phys, 112, 014101, 10.1063/1.4730600
Glaum, 2011, Temperature and driving field dependence of fatigue processes in PZT bulk ceramics, Acta Mater, 59, 6083, 10.1016/j.actamat.2011.06.017
Wang, 2009, Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload, J Appl Phys, 105, 014112, 10.1063/1.3065097
Sapper, 2014, Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics, J Eur Ceram Soc, 34, 653, 10.1016/j.jeurceramsoc.2013.09.006
Webber, 2010, High temperature blocking force measurements of soft lead zirconate titanate, J Phys D Appl Phys, 43, 365401, 10.1088/0022-3727/43/36/365401
Dittmer, 2012, Large blocking force in Bi1/2Na1/2TiO3-based lead-free piezoceramics, Scr Mater, 67, 100, 10.1016/j.scriptamat.2012.03.031
Haertling, 1994, Rainbow ceramics – a new type of ultra-high-dispalcement actuator, Am Ceram Soc Bull, 73, 93
Mulling, 2001, Load characterization of high displacement piezoelectric actuators with various end conditions, Sens Actuators A, 94, 19, 10.1016/S0924-4247(01)00688-4
Qiu, 2003, Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart Mater Struct, 12, 115, 10.1088/0964-1726/12/1/313
Woo, 2007, Prediction of actuating displacement in a piezoelectric composite actuator with a thin sandwiched PZT plate by a finite element simulation, J Mater Sci Technol, 21, 455
Arlt, 1988, Internal bias in ferroelectric ceramics – origin and time-dependence, Ferroelectrics, 87, 109, 10.1080/00150198808201374
Genenko, 2009, Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries, Phys Rev B, 80, 224109, 10.1103/PhysRevB.80.224109
Zhu, 2007, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics, J Am Ceram Soc, 90, 120, 10.1111/j.1551-2916.2006.01349.x
Taghaddos, 2014, Electromechanical properties of acceptor-doped lead-free piezoelectric ceramics, J Am Ceram Soc, 96, 1756, 10.1111/jace.12805
Li, 2008, Enhancement of Qm by Co-doping of Li and Cu to potassium sodium niobate lead-free ceramics, IEEE Trans Ultrason Ferroelectr Freq Control, 55, 980, 10.1109/TUFFC.2008.743
Schneider, 2007, Influence of electric field and mechanical stresses on the fracture of ferroelectrics, Annu Rev Mater Res, 37, 491, 10.1146/annurev.matsci.37.052506.084213
Kamlah, 2001, Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior, Int J Solids Struc, 38, 605, 10.1016/S0020-7683(00)00055-X
Furuta, 1993, Dynamic observation of crack-propagation in piezoelectric multilayer actuators, J Am Ceram Soc, 76, 1615, 10.1111/j.1151-2916.1993.tb03950.x
Lucato, 2001, Constraint-induced crack initiation at electrode edges in piezoelectric ceramics, Acta Mater, 49, 2751, 10.1016/S1359-6454(01)00169-0
Yilmaz, 2012, Investigation of fracture toughness of modified (KxNa1−x)NbO3 lead-free piezoelectric ceramics, J Eur Ceram Soc, 32, 3339, 10.1016/j.jeurceramsoc.2012.04.005
Zhang, 2010, Effect of humidity and hydrogen on the promotion of indentation crack growth in lead-free ferroelectric ceramics, Mater Sci Eng B, 167, 147, 10.1016/j.mseb.2010.01.048
Jin, 2004, Influence of dispersed coarse grains on mechanical and piezoelectric properties in (Bi1/2Na1/2)TiO3 ceramics, Mater Lett, 58, 1701, 10.1016/j.matlet.2003.10.061
Malič, 2008, Lead-free piezoelectrics based on alkaline niobates: synthesis, sintering and microstructure, Acta Chim Slov, 55, 719
Hagh, 2007, Processing-property relationship in lead free KNN-solid solution system, J Electroceram, 18, 339, 10.1007/s10832-007-9171-x
Malic, 2008, Synthesis of sodium potassium niobate: a diffusion couples study, J Am Ceram Soc, 91, 1916, 10.1111/j.1551-2916.2008.02376.x
Konig, 2009, The thermal decomposition of K0.5Bi0.5TiO3 ceramics, J Eur Ceram Soc, 29, 1695, 10.1016/j.jeurceramsoc.2008.10.002
Popovič, 2012, Knudsen effusion mass spectrometric approach to the thermodynamics of Na2O-Nb2O5 system, Int J Mass Spectrometry, 309, 70, 10.1016/j.ijms.2011.08.028
Koruza, 2014, Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates, J Eur Ceram Soc, 34, 1971, 10.1016/j.jeurceramsoc.2014.01.035
Hiruma, 2007, Grain-size effect on electrical properties of (Bi1/2K1/2)TiO3 ceramics, Jpn J Appl Phys, 46, 1081, 10.1143/JJAP.46.1081
Hao, 2012, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics, J Am Ceram Soc, 95, 1998, 10.1111/j.1551-2916.2012.05146.x
Schuetz, 2010, The chemical interaction of silver-palladium alloy electrodes with bismuth-based piezomaterials, J Am Ceram Soc, 93, 1142, 10.1111/j.1551-2916.2009.03568.x
Krauss, 2011, BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process, J Eur Ceram Soc, 31, 1857, 10.1016/j.jeurceramsoc.2011.02.032
Kim, 2009, Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator, J Electroceram, 23, 372, 10.1007/s10832-008-9470-x
Kobayashi, 2013, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn J Appl Phys, 52, 09KD07, 10.7567/JJAP.52.09KD07
Chan, 1982, Nonstoichetry in acceptor-doped BaTiO3, J Am Ceram Soc, 65, 167, 10.1111/j.1151-2916.1982.tb10388.x
Chazono, 2001, DC-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure, Jpn J Appl Phys, 40, 5624, 10.1143/JJAP.40.5624
Zang, 2014, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3, J Am Ceram Soc, 97, 1523, 10.1111/jace.12804
Eichel, 2008, Defect-dipole formation in copper-doped PbTiO3 ferroelectrics, Phys Rev Lett, 100, 095504, 10.1103/PhysRevLett.100.095504
Aksel, 2010, Defect structure and materials “hardening” in Fe2O3-doped (Bi0.5Na0.5)TiO3 ferroelectrics, Appl Phys Lett, 97, 012903, 10.1063/1.3455888
Blinc, 2000, NMR and the spherical random bond–random field model of relaxor ferroelectrics, J Phys Chem Solids, 61, 177, 10.1016/S0022-3697(99)00279-6
Aleksandrova, 2006, 23Na NMR in the relaxor ferroelectric Na1/2Bi1/2TiO3, Phys Solid State, 48, 1120, 10.1134/S106378340606031X
Aksel, 2012, Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature, Phys Rev B, 85, 024121, 10.1103/PhysRevB.85.024121
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys Rev, 140, A1133, 10.1103/PhysRev.140.A1133
King-Smith, 1993, Theory of polarization of crystalline solids, Phys Rev B, 47, 1651, 10.1103/PhysRevB.47.1651
Resta, 1992, Theory of the electric polarization in crystals, Ferroelectrics, 136, 51, 10.1080/00150199208016065
Vanderbilt, 1993, Electric polarization as a bulk quantity and its relation to surface-charge, Phys Rev B, 48, 4442, 10.1103/PhysRevB.48.4442
Körbel, 2010, Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions, Phys Rev B, 81, 174115, 10.1103/PhysRevB.81.174115
Lu, 2010, Ferroelectric polarization and domain walls in orthorhombic (K1−xNax)NbO3 lead-free ferroelectric ceramics, Appl Phys Lett, 96, 221905, 10.1063/1.3442905
Suewattana, 2010, Local dynamics and structure of pure and Ta substituted (K1−xNax)NbO3 from first principles calculations, Phys Rev B, 82, 014114, 10.1103/PhysRevB.82.014114
Gröting, 2014, Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures, Phys Rev B, 89, 054105, 10.1103/PhysRevB.89.054105
Gröting, 2011, Chemical order and local structure of the lead-free relaxor ferroelectric Na1/2Bi1/2TiO3, J Solid State Chem, 184, 2041, 10.1016/j.jssc.2011.05.044
Zeng, 2010, First-principles study on the electronic and optical properties of Na0.5Bi0.5TiO3 lead-free piezoelectric crystal, J Appl Phys, 107, 043513, 10.1063/1.3309407
Baettig, 2005, Theoretical prediction of new high-performance lead-free piezoelectrics, Chem Mater, 17, 1376, 10.1021/cm0480418
Miura, 2010, First-principles study of structural trend of BiMO3 and BaMO3: relationship between tetragonal or rhombohedral structure and the tolerance factors, Jpn J Appl Phys, 49, 031501, 10.1143/JJAP.49.031501
Armiento, 2014, High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability, Phys Rev B, 89, 134103, 10.1103/PhysRevB.89.134103
Bennett, 2012, Hexagonal ABC semiconductors as ferroelectrics, Phys Rev Lett, 109, 167602, 10.1103/PhysRevLett.109.167602
Bennett, 2012, Integration of first-principles methods and crystallographic database searches for new ferroelectrics: strategies and explorations, J Solid State Chem, 195, 21, 10.1016/j.jssc.2012.05.013
Zhong, 1995, First-principles theory of ferroelectric phase-transitions for perovskites – the case of BaTiO3, Phys Rev B, 52, 6301, 10.1103/PhysRevB.52.6301
Akbarzadeh, 2012, Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles, Phys Rev Lett, 108, 257601, 10.1103/PhysRevLett.108.257601
Burton, 2007, First principles phase diagram calculations for the system NaNbO3-KNbO3: can spinodal decomposition generate relaxor ferroelectricity?, Appl Phys Lett, 91, 092907, 10.1063/1.2775308
Sapper, 2014, Electric-field – temperature phase diagram of the ferroelectric relaxor system (1−x)Bi1/2Na1/2TiO3−xBaTiO3 doped with manganese, J Appl Phys, 115, 194104, 10.1063/1.4876746
Daniels, 2009, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 piezoelectric ceramic, Appl Phys Lett, 95, 032904, 10.1063/1.3182679
Hinterstein, 2010, Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics, J Appl Crys, 43, 1314, 10.1107/S0021889810038264
Kling, 2010, In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics, J Am Ceram Soc, 93, 2452, 10.1111/j.1551-2916.2010.03778.x
Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free piezoelectrics, Phys Rev Lett, 109, 107602, 10.1103/PhysRevLett.109.107602