Đánh giá Các Hệ số Chuyển và Liều Hiệu Quả Do Độ Phóng Xạ Tự Nhiên Trong Các Loại Ngũ Cốc Thực Phẩm Căn Bản Từ Khu Vực Gần Nhà Máy Điện Hạt Nhân Đề Xuất

Springer Science and Business Media LLC - Tập 10 - Trang 27-39 - 2017
Poonam Yadav1,2, V. K. Garg1,3, Balvinder Singh1, Vandana Pulhani4, Suman Mor2
1Centre for Radio-ecology, Guru Jambheshwar University of Science and Technology, Hisar, India
2Department of Environment Studies, Panjab University, Chandigarh, India
3Centre for Environmental Sciences and Technology, Central University of Punjab, Bathinda, India
4Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India

Tóm tắt

Nghiên cứu này tập trung vào việc định lượng nồng độ phóng xạ của các vật liệu phóng xạ tự nhiên 40K, 226Ra và 232Th trong hầu hết các loại ngũ cốc thực phẩm chủ yếu, cụ thể là lúa mì của khu vực nghiên cứu, bằng phương pháp quang phổ gamma trong hai năm. Hoạt độ của 40K, 226Ra và 232Th có thể phát hiện trong hầu hết các mẫu hạt lúa mì và dao động từ 111.3–245.7, <0.04–0.37 và <0.015–0.11 Bq kg−1 tương ứng. Liều hiệu quả do việc tiêu thụ các đồng vị phóng xạ qua các hạt lúa mì đã được tính toán dựa trên lượng tiêu thụ hàng năm ước tính của người dân địa phương. Ngoài ra, để đánh giá các hệ số chuyển của các đồng vị phóng xạ, các mẫu đất tương ứng đã được thu thập và đánh giá về nội dung phóng xạ của chúng. Mức độ phóng xạ trung bình đo được trong đất từ địa điểm nghiên cứu lần lượt là: 40K (544.7 ± 14.6 Bq kg−1) > 226Ra (41 ± 1.6 Bq kg−1) > 232Th (32.3 ± 1.2 Bq kg−1) và tương đương với các mức độ tương ứng trên toàn cầu. Các hệ số chuyển trung bình hình học của các NORM đã được nghiên cứu trong hạt lúa mì lần lượt là: 40K (0.371 ± 0.07) > 226Ra (0.003 ± 0.002) > 232Th (0.001 ± 0.001). Các mối quan hệ tích cực đáng kể giữa các hệ số chuyển của 40K, 226Ra và 232Th trong hạt lúa mì đã được quan sát với tổng hàm lượng carbon hữu cơ của đất. Liều hiệu quả hàng năm ước tính từ việc tiêu thụ lúa mì là 1.37E−01 mSv năm−1 đối với 40K, 4.14E−03 mSv năm−1 đối với 226Ra và 1.10E−03 mSv năm−1 đối với 232Th, đều nằm dưới giới hạn trung bình toàn cầu cho phép.

Từ khóa

#đồng vị phóng xạ tự nhiên #lúa mì #phóng xạ #liều hiệu quả #hệ số chuyển

Tài liệu tham khảo

Abojassim AA, Al-Gazaly HH, Kadhim SH (2014) 238U, 232Th and 40K in wheat flour samples of Iraq markets. Ukr Food J 3(3):333–340 Akhter P, Rahman K, Orfi SD, Ahmad N (2007) Radiological impact of dietary intakes of naturally occurring radionuclides on Pakistani adults. Food Chem Toxico 45:272–277 Al-Kharouf SJ, Al-Hamarneh IF, Dababneh M (2008) Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. J Environ Radioact 99:1192–1199 Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution, 2nd edn. Chapman Hall, London Anke MK, Merian E, Anke M, Ihnat M, Stoeppler M (2004) Transfer of macro trace and ultratrace elements in the food chain In: Elements and their compounds in the environment. Wiley VCH, Weinheim, pp 101–108 Arogunjo AM, Ofuga EE, Afolabi MA (2005) Levels of natural radionuclides in some Nigerian cereals and tubers. J Environ Radio 82:1–6 Bettencourt AO, Teixeira MMGR, Elias MDT, Faisca MC (1988) Soil to plant transfer of Radium-226. J Environ Radioact 6:49–60 Changizi V, Jafarpoor Z, Naseri M (2013) Measurement of 226Ra, 228Ra, 137Cs and 40K in edible parts of two types of leafy vegetables cultivated in Tehran province-Iran and resultant annual ingestion radiation dose Iran. J Radiat Res 8(2):103–110 El-Samad O, Baydoun R, Nsouli B, Darwish T (2013) Determination of natural and artificial radioactivity in soil at North Lebanon province. J Environ Radioact 125:36–39 Hernandez F, Hernandez-Armas J, Catalan A, Fernandez-Aldecoa JC, Landeras MI (2004) Activity concentrations and mean annual effective dose of foodstuffs on the island of Tenerife Spain. Radiat Protect Dosim 111(2):205–210 Hosseini T, Fathivand AA, Abbasisiar F, Karimi M, Barati H (2006) Assessment of annual effective dose from 238U and 226Ra due to consumption of foodstuffs by inhabitants of Tehran city Iran. Radiat Protect Dosim 121(3):330–332 Hunsen RO, Huntington GL (1969) Thorium movements in morainal soils of the high Sierra California. Soil Sci 108:257–265 IAEA (1982) Genetic models and parameters for assessing the environmental transfer of radionuclides from routine release IAEA Vienna Safety series no 57, pp 61–65 IAEA (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments Technical report IAEA Vienna Safety series no 364, pp 14–26 IAEA (2006) Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants IAEA-TECDOC-1497 IAEA Vienna IAEA (2009) Quantification of radionuclide transfers in terrestrial and freshwater environments for radiological assessments IAEA-TECDOC-1616 IAEA Vienna ICRP (2012) Compendium of dose coefficients based on ICRP 601 ICRP Publication 119 Volume 41 (1) ISSN 0146-6453 ISBN 978 -1- 4557-5430-4 James-Joshy P, Dileep BN, Ravi PM, Joshi RM, Ajith TL, Hegde AG, Sarkar PK (2011) Soil to leaf transfer factor for the radionuclides 226Ra, 40K ,137Cs and 90Sr at Kaiga region India. J Environ Radioact 102:1070–1077 Jibiri NN, Farai IP, Alausa SK (2007) Activity concentrations of 226Ra, 228Th and 40K in different food crops from a high background radiation area in Bitscichi Jos Plateau Nigeria. Radiat Environ Biophys 46:53–59 Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109–119 Karunakara N, Ujwal P, Yashodhara I, Rao C, Kuamara KS, Dileep BN, Ravi PM (2013) Studies on soil to grass transfer factor (Fv) and grass to milk transfer coefficient (Fm) for cesium in Kaiga region. J Environ Radioact 124:101–112 Khanna D, Malathi J, Brahmanandhan GM, Selvasekarapandian S (2005) Measurement of activity concentrations of 40K, 238U and 232Th in soil samples of Agastheeswaram taluk Kanyakumari district India. Int Congr Ser 1276:319–320 Kumar M, Prasher S, Singh S (2009) Uranium analysis in some food samples collected from Bathinda area of Punjab India Indian. J Phys 83(7):1045–1050 Lenka P, Sahoo SK, Mohapatra S, Patra AC, Dubey JS, Vidyasagar D, Tripathi RM, Puranik VD (2013) Ingestion dose from 238U 232Th 226Ra 40K and 137Cs in cereals pulses and drinking water to adult population in a high background radiation area Odisha India. Radiat Prot Dosim 153(3):328–333 Lindahl P, Maquet A, Hult M, Gasparro J, Marissens G, González de Orduña R (2011) Natural radioactivity in winter wheat from organic and conventional agricultural systems. J Environ Radioact 102:163–169 Mehra R (2009) Radiological risk assessment in soil samples of Western Haryana India. World Acad Sci Eng Technol 3(6):448–452 Mlwilo NA, Mohammed NK, Spyrou NM (2007) Radioactivity levels in staple foodstuffs and dose estimates for most of the Tanzanian population. J Radiol Prot 27:471–480 Patra AC, Mohapatra S, Sahoo SK, Lenka P, Dubey JS, Thakur VK, Kumar AV, Ravi PM, Tripathi RM (2014) Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag India. J Radioanal Nucl Chem 300(3):903–910 Pulhani VA, Dafauti S, Hegde AG, Sharma RM, Mishra UC (2005) Uptake and distribution of natural radioactivity in wheat plants from soil. J Environ Radioact 79:331–346 Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long term impact of irrigation with sewage effluents on heavy metal content in soils crops and groundwater—a case study. Agri Eco Env 109:310–322 Ravi PM, Rout S, Kumar A, Tripathi RM (2014) A review of the studies on environmental transport and speciation analysis of radionuclides in India. J Radioanal Nucl Chem 300:169–175 Ross EM, Raj YL, Wesley SG, Rajan MP (2013) Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project India. J Environ Radioact 115:201–206 Selvasekarapandian S, Manikandan NM, Sivakumar R, Meenakshisundaram V, Raghunath VM (2002) Natural radiation distribution of soils at Kotagiri Taluk of the Nilgiris biosphere in India. J Radioanal Nucl Chem 252(2):429–435 Shanthi G, Thampi TKJ, Allan GRG, Maniyan CG (2010) Natural radionuclides in the South Indian foods and their annual dose. Nucl Instrum Method Phys Res 619:436–440 Sharma RK, Agrawal M, Marshall FM (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi India. Ecotoxicol Environ Saf 66:258–266 Singh S, Rani A, Mahajan RK (2005) 226Ra, 232Th and 40K analysis of soil samples from some areas of Punjab and Himachal Pradesh India using gamma ray spectrometry. Radiat Measure 39:431–439 Singh B, Kataria N, Garg VK, Yadav P, Kishore N, Pulhani V (2014a) Uranium quantification in groundwater and health risk from its ingestion in Haryana, India. Toxicol Environ Chem 96(10):1571–1580 Singh B, Garg VK, Yadav P, Kishore N, Pulhani V (2014b) Uranium in groundwater from Western Haryana, India. J Radioanal Nucl Chem 301:427–433 Singh M, Garg VK, Gautam YP, Singh AK (2014c) Transfer factor of 137Cs from soil to wheat grains and dosimetry around Narora Atomic Power Station, Narora, India. J Radioanal Nucl Chem 303(1):901–909 Smuc NR, Dolenec T, Serafimovski T, Tase G, Dolenec M, Vrhovnik P (2012) Heavy metal characteristics in Kocani Field plant system (Republic of Macedonia). Environ Geochem Health 34(4):513–526 Tufail M, Sabiha-Javied Akhtar N, Akhter J (2010) Assessment of annual effective dose from natural radioactivity intake through wheat grain produced in Faisalabad, Pakistan. J Radioanal Nucl Chem 283(3):585–590 UNSCEAR (2000) Sources and effects and risks of ionizing radiation Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly United Nations Yadav P, Singh B, Garg VK, Mor S, Pulhani V (2017) Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum Ecol Risk Assess 23:14–27