Các bản sao của peptide kháng khuẩn trong hồng cầu gà bị nhiễm virus bệnh Marek

Springer Science and Business Media LLC - Tập 14 - Trang 1-9 - 2018
Sheng Niu1, Ali Raza Jahejo1, Fa-jie Jia1, Xin Li1, Guan-bao Ning1, Ding Zhang1, Hai-li Ma1, Wei-fang Hao2, Wen-wei Gao1, Yu-jun Zhao1, Shi-min Gao1, Gui-lan Li1, Jian-hui Li1, Fang Yan1, Rong-kun Gao1, Yu-hai Bi1,3, Ling-xia Han4, George F. Gao1,3, Wen-xia Tian1
1College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
2Taiyuan Center for Disease Control and Prevention, Taiyuan, China
3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
4Department of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China

Tóm tắt

Hồng cầu gà tham gia vào miễn dịch thông qua việc gắn kết các thụ thể giống toll (TLRs) với các ligand của chúng nhằm kích hoạt tín hiệu ở hạ nguồn và dẫn đến sản xuất cytokine trong hồng cầu. Một số avian β-defensins (AvBDs) được biểu hiện ổn định trong các mô, trong khi một số khác có thể được kích thích bởi nhiều loại vi khuẩn và virus khác nhau. Tuy nhiên, việc biểu hiện của AvBDs trong hồng cầu vẫn chưa được nghiên cứu một cách sâu rộng. Các bản sao của tám loại AvBDs (AvBD1 đến AvBD7, và AvBD9) và peptide kháng khuẩn biểu hiện ở gan-2 (LEAP-2) đã được phát hiện trong hồng cầu gà bình thường. Mức độ biểu hiện của AvBD2, 4 và 7 đã tăng lên đáng kể (P < 0.01), trong khi mức độ của AvBD1, 6 và 9 đã giảm xuống đáng kể (P < 0.01) sau khi nhiễm virus bệnh Marek (MDV). Mức độ biểu hiện mRNA của LEAP-2 không thay đổi đáng kể sau khi nhiễm MDV. Mức độ axit nucleic virus (VNA) cao nhất của MDV trong đầu lông ở giữa các thời điểm thử nghiệm được tìm thấy vào ngày thứ 14 sau khi nhiễm (d.p.i.). Thêm vào đó, 35 đoạn gen liên quan đến MD5 đã được phát hiện trong hồng cầu vào ngày thứ 14 d.p.i. Những kết quả này cho thấy rằng các AvBDs trong hồng cầu gà có thể tham gia vào phản ứng miễn dịch của chủ thể do MDV gây ra.

Từ khóa

#Hồng cầu gà #peptide kháng khuẩn #virus bệnh Marek #miễn dịch #avian β-defensins

Tài liệu tham khảo

Paolucci S, Barjesteh N, Wood RD, Sharif S. Chicken erythrocytes respond to toll-like receptor ligands by up-regulating cytokine transcripts. Res Vet Sci. 2013;95(1):87–91. Claver JA, Quaglia AI. Comparative morphology, development, and function of blood cells in nonmammalian vertebrates. J Exot Pet Med. 2009;18(2):87–97. Passantino L, Massaro MA, Jirillo F, Di Modugno D, Ribaud MR, Di Modugno G, Passantino GF, Jirillo E. Antigenically activated avian erythrocytes release cytokine-like factors: a conserved phylogenetic function discovered in fish. Immunopharmacol Immunotoxicol. 2007;29(1):141–52. Workenhe ST, Kibenge MJ, Wright GM, Wadowska DW, Groman DB, Kibenge FS. Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes. Virol J. 2008;5(1):36. Morera D, Roher N, Ribas L, Balasch JC, Doñate C, Callol A, Boltaña S, Roberts S, Goetz G, Goetz FW. RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PLoS One. 2011;6(10):e26998. Calnek B. Pathogenesis of Marek’s disease virus infection. In: Marek’s Disease. Berlin, Heidelberg: Springer; 2001. p. 25–55. Witter RL. Characteristics of Marek's disease viruses isolated from vaccinated commercial chicken flocks: association of viral pathotype with lymphoma frequency. Avian Dis. 1983;27(1):113–32. Eade CR, Wood MP, Cole AM. Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr HIV Res. 2012;10(1):61–72. Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000;8(9):402–10. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50. Yacoub HA, Elazzazy AM, Abuzinadah OA, Al-Hejin AM, Mahmoud MM, Harakeh SM. Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi. Front Cell Infect Microbiol. 2015;5:36. Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng J-F, Skinner-Noble D, Zhang G. A genome-wide screen identifies a single β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics. 2004;5(1):56. Higgs R, Lynn DJ, Gaines S, McMahon J, Tierney J, James T, Lloyd AT, Mulcahy G, O’Farrelly C. The synthetic form of a novel chicken β-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics. 2005;57(1–2):90–8. Lynn DJ, Higgs R, Lloyd AT, O’Farrelly C, Hervé-Grépinet V, Nys Y, Brinkman FS, Yu PL, Soulier A, Kaiser P, Zhang G. Avian beta-defensin nomenclature: a community proposed update. Immunol Lett. 2007;110(1):86–9. Cuperus T, Coorens M, van Dijk A, Haagsman HP. Avian host defense peptides. Dev Comp Immunol. 2013;41(3):352–69. van Dijk A, Veldhuizen EJ, Haagsman HP. Avian defensins. Vet Immunol Immunopathol. 2008;124:1):1–18. Yoshimura Y. Avian β-defensins expression for the innate immune system in hen reproductive organs. Poult Sci. 2015;94(4):804–9. Lynn DJ, Higgs R, Gaines S, Tierney J, James T, Lloyd AT, Fares MA, Mulcahy G, O’Farrelly C. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics. 2004;56(3):170–7. Derache C, Labas V, Aucagne V, Meudal H, Landon C, Delmas AF, Magallon T, Lalmanach AC. Primary structure and antibacterial activity of chicken bone marrow-derived β-defensins. Antimicrob Agents Chemother. 2009;53(11):4647–55. Subedi K, Isobe N, Nishibori M, Yoshimura Y. Changes in the expression of gallinacins, antimicrobial peptides, in ovarian follicles during follicular growth and in response to lipopolysaccharide in laying hens (Gallus domesticus). Reproduction. 2007;133(1):127–33. Zhao C, Nguyen T, Liu L, Sacco RE, Brogden KA, Lehrer RI. Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infect Immun. 2001;69(4):2684–91. Derache C, Esnault E, Bonsergent C, Le Vern Y, Quéré P, Lalmanach A-C. Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Dev Comp Immunol. 2009;33(9):959–66. Lu L, Li S, Zhang L, Liu X, Li D, Zhao X, Liu Y. Expression of β-defensins in intestines of chickens injected with vitamin D3 and lipopolysaccharide. Genet Mol Res. 2015;14(2):3330–7. Xu Y, Zhang T, Xu Q, Han Z, Liang S, Shao Y, Ma D, Liu S. Differential modulation of avian β-defensin and toll-like receptor expression in chickens infected with infectious bronchitis virus. Appl Microbiol Biotechnol. 2015;99(21):9011–24. Li S, Ouyang L, Zhou D. Effects of vitamin D3 on expression of defensins, toll-like receptors, and vitamin D receptor in liver, kidney, and spleen of silky fowl. Czech J Anim Sci. 2013;58:1):1–7. Abdul-Careem MF, Hunter BD, Lee LF, Fairbrother JH, Haghighi HR, Read L, Parvizi P, Heidari M, Sharif S. Host responses in the bursa of Fabricius of chickens infected with virulent Marek's disease virus. Virology. 2008;379(2):256–65. Kannan L, Liyanage R, Lay JO, Rath NC. Evaluation of beta defensin 2 production by chicken heterophils using direct MALDI mass spectrometry. Mol Immunol. 2009;46(15):3151–6. Abdel-Mageed AM, Isobe N, Yoshimura Y. Effects of different TLR ligands on the expression of proinflammatory cytokines and avian β-defensins in the uterine and vaginal tissues of laying hens. Vet Immunol Immunopathol. 2014;162(3):132–41. Kannan L, Rath N, Liyanage R, Lay J. Direct screening identifies mature β-defensin 2 in avian heterophils. Poult Sci. 2009;88(2):372–9. Ma D, Lin L, Zhang K, Han Z, Shao Y, Liu X, Liu S. Three novel Anas platyrhynchos avian β-defensins, upregulated by duck hepatitis virus, with antibacterial and antiviral activities. Mol Immunol. 2011;49(1):84–96. Michailidis G. Expression of chicken LEAP-2 in the reproductive organs and embryos and in response to Salmonella enterica infection. Vet Res Commun. 2010;34(5):459–71. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4):778–809. Li Y, Xu Q, Zhang T, Gao M, Wang Q, Han Z, Shao Y, Ma D, Liu S. Host avian Beta-Defensin and toll-like receptor responses of pigeons following infection with pigeon paramyxovirus type 1. Appl Environ Microbiol. 2015;81(18):6415–24. Kabanova S, Kleinbongard P, Volkmer J, Andrée B, Kelm M, Jax TW. Gene expression analysis of human red blood cells. Int J Med Sci. 2009;6(4):156. Shao ES, Lin GF, Liu S, Ma XL, Chen MF, Lin L, Wu SQ, Sha L, Liu ZX, Hu XH, Guan X. Identification of transcripts involved in digestion, detoxification and immune response from transcriptome of Empoasca vitis (Hemiptera: Cicadellidae) nymphs. Genomics. 2017;109(1):58–66. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics. 2011;12(1):323. Abdul-Careem MF, Hunter BD, Sarson AJ, Mayameei A, Zhou H, Sharif S. Marek’s disease virus–induced transient paralysis is associated with cytokine gene expression in the nervous system. Viral Immunol. 2006;19(2):167–76. Islam A, Harrison B, Cheetham BF, Mahony TJ, Young PL, Walkden-Brown SW. Differential amplification and quantitation of Marek’s disease viruses using real-time polymerase chain reaction. J Virol Methods. 2004;119(2):103–13. Baigent SJ, Petherbridge LJ, Howes K, Smith LP, Currie RJ, Nair VK. Absolute quantitation of Marek's disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. J Virol Methods. 2005;123(1):53–64.