Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích transcriptome cho thấy việc áp dụng glucose ảnh hưởng đến con đường truyền tín hiệu hormone thực vật trong cây giống nho "Red Globe"
Tóm tắt
Đường đóng vai trò quan trọng như một phân tử tín hiệu trong sự phát triển, tăng trưởng và điều hòa quang hợp của thực vật. Tuy nhiên, các cơ chế chính của sự chuyển hóa đường và mức độ biểu hiện của các gen liên quan đến các quá trình này vẫn chưa được hiểu rõ. Trong nghiên cứu hiện tại, chúng tôi đã áp dụng các nồng độ glucose khác nhau (0, 1, 2 và 4%) cho các cây giống nho "Red Globe" được nuôi cấy trong ống nghiệm và xây dựng bốn thư viện được đặt tên là G0, G10, G20 và G40 thông qua phân tích transcriptome. Chúng tôi phát hiện ra rằng glucose ngoại sinh đã làm tăng đáng kể quang hợp và thúc đẩy tăng trưởng cũng như sự phát triển của các cây giống nho so với G0. Mức độ hormone của các cây giống, đặc biệt là của ZT, IAA, ABA và JA, đã tăng đáng kể tại G20 và G40 so với G0. Qua việc giải trình tự RNA, 4397 gen biểu hiện khác biệt đã được xác định, bao gồm 875 gen lên điều hòa và 3522 gen xuống điều hòa. Phân tích chức năng cho thấy những gen này đã được làm giàu đáng kể trong con đường truyền tín hiệu hormone thực vật. Tại đây, AUX1, AUX/IAA, TIR1, ARF, GH3 và SAUR, những gen chủ chốt, đã thể hiện các hồ sơ biểu hiện khác biệt giống như con đường truyền tín hiệu auxin, và PYL/PYR, SnRK2s, PP2Cs đối với acid abscisic, JAZ, MYC2 đối với acid jasmonic. Hơn nữa, các cây giống nho có khả năng phát triển quang tự dưỡng trong G0. LHCAs, PSAs, NDHH và PSBs được liên kết với quang tự dưỡng. ACO1 và ACO3 được xác nhận là có liên quan đến sự chuyển hóa glucose. Nồng độ glucose cao nhất (G40) đã làm giảm quang hợp của cây giống "Red Globe" do việc giảm biểu hiện hoạt động của Rubisco, và RH39 là một gen chủ chốt liên quan đến việc điều chỉnh hoạt động của Rubisco. Nghiên cứu này đã tiết lộ rằng glucose ngoại sinh làm tăng quang hợp và cải thiện sự phát triển cũng như tăng trưởng của cây giống "Red Globe" bằng cách điều chỉnh sự biểu hiện của các gen liên quan đến quang hợp và con đường truyền tín hiệu hormone thực vật.
Từ khóa
Tài liệu tham khảo
Al-Khateeb AA (2008) Regulation of in vitro bud formation of date palm (Phoenix dactylifera L.) cv. Khanezi by different carbon sources. Bioresour Technol 99:6550–6555
Barbara BU, Estefania V, Powell ALT, Dario C (2013) Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant Sci 4(7):142
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300
Capellades M, Lemeur R, Debergh P (1991) Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tiss Org 25:21–26
Cheng J (2009) Accumulation of end products in source leaves affects photosynthetic rate in peach via alteration of stomatal conductance and photosynthetic efficiency. J Am Soc Hortic Sci 134:667–676
Cho YH, Yoo SD (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7(1):e1001263
Coste S, Baraloto C, Leroy C, Marcon É, Renaud A, Richardson AD, Roggy JC, Schimann H, Uddling J, Hérault B (2010) Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann For Sci 67:607
Cuenca B, Vieitez AM (2000) Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures. Plant Growth Regul 32:1–12
Dreher KA, Brown J, Saw RE, Callis J (2006) The Arabidopsis aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18:699–714
Finkelstein RR, Lynch TG (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122:1179–1186
Gibson SI, Laby RJ, Kim D (2001) The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem Bioph Res Commun 280:196–203
Hdider C, Desjardins Y (1995) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase efficiency by the presence of sucrose during the tissue culture of strawberry plantlets. In Vitro Cell Dev Biol-Plant 31(3):165–170
Kariali E, Mohapatra P (2007) Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regul 53:215–223
Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122:85–98
Kozai T, Iwanami Y (1988) Effects of CO2 enrichment and sucrose concentration under high photon flux on plantlet growth of carnation (Dianthus caryophyilus L.) in tissue culture during the preparation stage. J Jpn Soc Hortic Sci 57:279–288
LeClere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153(1):306–318
Li X, Mo XR, Shou HX, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47(8):1112–1123
Li GF, Ma JJ, Tan M, Mao JP, An N, Sha GL, Zhang D, Zhao CP, Han MY (2016) Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genom 17:150
Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49(3):387–400
Liu Y, Wang QS, Ding YF, Li GH, Xu JX, Wang SH (2011) Effects of external ABA, GA3 and NAA on the tiller bud outgrowth of rice is related to changes in endogenous hormones. Plant Growth Regul 65(2):247–254
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{-}{\Delta\Delta}{\text{C}_{\text{T}}}}\) method. Methods 25:402–408
Lobo AK, de Oliveira Martins M, Lima Neto MC, Machado EC, Ribeiro RV, Silveira JA (2015) Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol 179:113–121
Markakis MN, Cnodder TD, Lewandowski M, Simon D, Boron A, Balcerowicz D, Doubbo T, Taconnat L, Renou JP, Höfte H, Verbelen JP, Vissenberg K (2013) Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol 12:208
McCormick AJ, Cramer MD, Watt DA (2008a) Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane. Ann Bot 101:89–102 a)
McCormick AJ, Cramer MD, Watt DA (2008b) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829 b)
McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72(3):436–449
Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
Ncube B, Finnie JF, Staden JV (2013) Carbon–nitrogen ratio and in vitro, assimilate partitioning patterns in cyrtanthus guthrieae L. Plant Physiol Bioch 74C:246–254
Nguyen HN, Kim JH, Hyun WY, Nguyen NT, Hong SW, Lee HJ (2013) TTG1-mediated flavonols biosynthesis alleviates root growth inhibition in response to ABA. Plant Cell Rep 32:503–514
Price DG, Pengelly JJL, Forster B, Du JH, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64(3):753–768
Rolland F, Baena-gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: con-served and novel mechanisms. Annu Rev Plant Biol 57:675–709
Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67
Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665
Sairanen I, Novak O, Pencik A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24(12):4907–4916
Seo H, Kriechbaumer V, Park WJ (2016) Modern quantitative analytical tools and biosensors for functional studies of auxin. J Plant Biol 59(2):93–104
Serret MD, Trillas MI, Matas J, Araus JL (1996) Development of photoautotrophy and photoinhibition of Gardenia jasminoides plantlets during micropropagation. Plant Cell Tiss Org 45(1):1–16
Shen C, Wang J, Jin X, Liu N, Fan X, Dong C, Shen Q, Xu Y (2017) Potassium enhances the sugar assimilation in leaves and fruit by regulating the expression of key genes involved in sugar metabolism of Asian pears. Plant Growth Regul (1):1–14
Sorce C, Montanaro G, Bottega S, Spanò C (2017) Indole-3-acetic acid metabolism and growth in young kiwifruit berry. Plant Growth Regul (9):1–11
Wang R, Estelle M (2014) Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin Plant Biol 21:51–58
Wang Z, Xu YJ, Chen TT, Zhang H, Yang JC, Zhang JH (2015) Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta 241:1091–1107
Wójcikowska B, Gaj MD (2017) Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep:1–16
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 38(1):35–49
Zhu G, Ye N, Yang J, Peng X, Zhang J (2011) Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot 62:3907–3916
