Quy định điều chỉnh phiên mã các gen chuyển hóa tinh bột và những thay đổi sinh lý đáp ứng với căng thẳng muối ở cây mầm gạo (Oryza sativa L.)

Physiology and Molecular Biology of Plants - Tập 18 - Trang 197-208 - 2012
Cattarin Theerawitaya1, Thanapol Boriboonkaset2, Suriyan Cha-um1, Kanyaratt Supaibulwatana2, Chalermpol Kirdmanee1
1National Center for Genetic Engineering and Biotechnology, Klong Luang, Thailand
2Department of Biotechnology, Faculty of Science, Mahidol University, Payathai, Thailand

Tóm tắt

Mục tiêu của nghiên cứu này là so sánh sự biểu hiện phiên mã của chuyển hóa tinh bột, liên quan đến các gen và đặc điểm sinh lý, ở các cây mầm của hai giống gạo chịu mặn khác nhau, trong phản ứng với căng thẳng muối. Hàm lượng đường hòa tan trong cây mầm gạo của cả hai giống gạo chịu mặn và nhạy cảm với muối đều được làm phong phú, liên quan đến sự phân giải tinh bột, ở những cây chịu 200 mM NaCl. Trong giống gạo chịu mặn Pokkali, một nguồn carbon chính có thể đến từ hệ thống quang hợp và sự phân giải tinh bột. Trong quá trình phân giải tinh bột, chỉ có các gen Pho và PWD trong giống Pokkali được điều chỉnh tăng lên ở các cây chịu căng thẳng muối. Ngược lại, khả năng quang hợp của giống gạo nhạy cảm với muối IR29 giảm đáng kể, liên quan đến sự giảm trưởng. Nguồn carbohydrate chính trong các cây mầm IR29 chịu căng thẳng muối có thể đến từ chuyển hóa tinh bột, được điều chỉnh bởi ADP-glucose pyrophosphorylase (AGP), starch synthase (SS), starch branching enzyme (SBE), starch debranching enzyme (ISA), glucan-water dikinase (GWD), dispropotionating enzyme (DPE), phospho glucan-water dikinase (PWD) và starch phosphorylase (Pho). Ngoài ra, đường đi chính của đường hòa tan trong cây mầm Pokkali chịu căng thẳng muối được xuất phát từ quang hợp và chuyển hóa tinh bột. Điều này được xác định là thông tin mới trong nghiên cứu hiện tại.

Từ khóa


Tài liệu tham khảo

Balibrea ME, Amico JD, Balarín MC, Pérez-Afocea FP (2000) Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiol Plant 110:503–511 Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosyn Res 79:1–24 Brumós J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sánchez G, Iglesias DJ, López-Climent MF, Gómez-Cadenas A, Talón M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genom 9:293–309 Cha-um S, Supaibulwatana K, Kirdmanee C (2006) Water relation, photosynthetic ability, and growth of Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105) to salt stress by application of exogenous glycinebetaine and choline. J Agron Crop Sci 192:25–36 Cha-um S, Supaibulwatana K, Kirdmanee C (2007) Glycinebetaine accumulation, physiological characterizations, and growth efficiency in salt tolerant and salt sensitive lines of indica rice (Oryza sativa L. spp. indica) response to salt stress. J Agron Crop Sci 193:157–166 Cha-um S, Charoenpanich A, Roytrakul S, Kirdmanee C (2009) Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant 31:477–486 Cha-um S, Ashraf M, Kirdmanee C (2010) Screening upland rice (Oryza sativa L. spp. indica) genotypes for salt-tolerance using multivariate cluster analysis. Afri J Biotechnol 9:4731–4740 Chen HJ, Chen JY, Wang SJ (2008) Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiol Plant 30:135–142 Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448 Djanaguiraman M, Sheeba JA, Shanker AK, Devi DD, Bangarusamy U (2006) Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284:363–373 Ferdose J, Kawasaki M, Taniguchi M, Miyake H (2009) Differential sensitivity of rice cultivars to salinity and its relation to ion accumulation and root tip structure. Plant Prod Sci 12:453–461 Ghosh N, Adak MK, Ghosh PD, Gupta S, Gupta DNS, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89–103 Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and –sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81 Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776 Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499 James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222 Kader MA, Lindberg S (2005) Uptake of sodium in protoplasts of salt-sensitive and salt tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot 56:3149–3158 Kafi M, Stewart WS, Borland AM (2003) Carbohydrate and proline contents in leaves, roots and apices of salt-tolerant and salt sensitive wheat cultivars. Russ J Plant Physiol 50:174–182 Kanai M, Higuchi K, Hagihara T, Konishi T, Ishii T, Fujita N, Nakamura Y, Maeda Y, Tadano T (2007) Common reed produces starch granules at the shoot base in response to salt stress. New Phytol 176:572–580 Karkacier M, Erbas M, Usiu MK, Aksu M (2003) Comparison of different extraction and detection methods for sugar using amino-bonded phase HPLC. J Chromatogr Sci 41:331–333 Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487 Khelil A, Menu T, Ricard B (2007) Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiol Biochem 45:551–559 Kötting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment. Curr Opin Plant Biol 13:321–329 Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB (2003) Salinity tolerance of japonica and indica rice (Oryza sativa L.) at seedling stage. Planta 216:1043–1046 Lee SK, Hwang SK, Han M, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65:531–546 Liu T, van Staden J (2001) Partitioning of carbohydrate in salt-sensitive and salt-tolerant soybean callus cultures under salinity stress and its subsequent relief. Plant Growth Regul 33:13–17 Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099 Malagoli P, Britto DT, Schulze LM, Kronzucker HJ (2008) Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetic, energetics, and relationship to salinity tolerance. J Exp Bot 59:4109–4117 Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122 Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668 McCleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Inter 85:665–675 Morsy MR, Jouve L, Hausman JF, Hoffmann SJM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167 Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497 Orzechowski S (2008) Starch metabolism in leaves. Acta Biochim Polonic 55:435–445 Praxedes SC, de Lacerda CF, Ferreira TM, Prisco JT, DaMatta FM, Gomes-Filho E (2011) Salt tolerance is unrelated to carbohydrate metabolism in cowpea cultivars. Acta Physiol Plant 33:887–896 Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt–affected environments through crop diversification. Land Degrad Develop 19:429–453 Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor Senadheera P, Singh RK, Maathuis FJM (2009) Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. J Exp Bot 60:2553–2563 Tanji KK (2002) Salinity in the soil environment. In: Lauchli A, Luttge U (eds) Salinity environment–plant–molecules. Kluwer Academic, Dordrecht, pp 21–51 Tetlow IJ (2006) Understanding storage starch biosynthesis in plants: a means to quality improvement. Can J Bot 84:1167–1185 Tiwari BS, Bose A, Giiosii B (1997) Photosynthesis in rice under a salt stress. Photosynthetica 34:303–306 Voigt EL, Almeida TD, Chagas RM, Ponte LFA, Viégas RA, Silveira JAG (2009) Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacadium occidentale) seedling establishment under NaCl salinity. J Plant Physiol 166:80–89 Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835 Wang SJ, Liu LF, Chen CK, Chen LW (2006) Regulation of granule-bound starch synthase I gene expression in rice leaves by temperature and drought stress. Biol Plant 50:537–541 Wang RL, Hua C, Zhou F, Zhou QC (2009) Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar. Photosynthetica 47:125–127 Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61:563–574 Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401:13–28 Zeeman SC, Kossmann J, Smith AM (2010) Starch its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234