Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages

Journal of Experimental Medicine - Tập 198 Số 5 - Trang 693-704 - 2003
Dirk Schnappinger1,2, Sabine Ehrt1, Martin I. Voskuil3, Yang Liu3, Joseph A. Mangan4, Irene M. Monahan4, Gregory Dolganov5, Brad Efron6, Philip D. Butcher4, Carl Nathan1,2,7, Gary K. Schoolnik3
13Department of Microbiology and Immunology, Weill Medical College and Graduate Programs in
24Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021
31Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford Medical School
46Department of Medical Microbiology, St. George's Hospital Medical School, London SW17 ORE, United Kingdom
57Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA 94143
62Department of Health Research and Policy, Stanford University, Stanford, CA 94305
75Immunology, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021

Tóm tắt

Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.

Từ khóa


Tài liệu tham khảo

1999, Annu. Rev. Immunol., 17, 593, 10.1146/annurev.immunol.17.1.593

2000, Proc. Natl. Acad. Sci. USA., 97, 8841, 10.1073/pnas.97.16.8841

1997, Microbiol. Mol. Biol. Rev., 61, 136

2002, Curr. Opin. Microbiol., 5, 56, 10.1016/S1369-5274(02)00286-2

2001, Nat. Rev. Mol. Cell Biol., 2, 569, 10.1038/35085034

1998, J. Immunol., 160, 1290, 10.4049/jimmunol.160.3.1290

2001, Annu. Rev. Immunol., 19, 93, 10.1146/annurev.immunol.19.1.93

2001, Annu. Rev. Microbiol., 55, 139, 10.1146/annurev.micro.55.1.139

2001, Cell., 104, 477, 10.1016/S0092-8674(01)00236-7

2001, J. Exp. Med., 194, 1123, 10.1084/jem.194.8.1123

2001, Proc. Natl. Acad. Sci. USA., 98, 5116, 10.1073/pnas.091062498

1999, Mol. Microbiol., 31, 715, 10.1046/j.1365-2958.1999.01212.x

2000, J. Immunol., 165, 2596, 10.4049/jimmunol.165.5.2596

2001, J. Immunol., 166, 6728, 10.4049/jimmunol.166.11.6728

2002, Infect. Immun., 70, 5800, 10.1128/IAI.70.10.5800-5807.2002

1999, Methods Enzymol., 303, 179, 10.1016/S0076-6879(99)03014-1

2002, Proc. Natl. Acad. Sci. USA., 99, 9697, 10.1073/pnas.112318199

2000, Nature., 406, 735, 10.1038/35021074

1999, Nature., 402, 79, 10.1038/47042

1999, Mol. Microbiol., 34, 257, 10.1046/j.1365-2958.1999.01593.x

2000, Proc. Natl. Acad. Sci. USA., 97, 1252, 10.1073/pnas.97.3.1252

2001, Mol. Microbiol., 40, 879, 10.1046/j.1365-2958.2001.02427.x

2002, Microbiology., 148, 2975, 10.1099/00221287-148-10-2975

2002, Microbiology., 148, 3873, 10.1099/00221287-148-12-3873

1998, Nature., 393, 537, 10.1038/31159

1993, Science., 261, 1454, 10.1126/science.8367727

2003, J. Exp. Med., 198, 705, 10.1084/jem.20030205

2001, Proc. Natl. Acad. Sci. USA., 98, 7534, 10.1073/pnas.121172498

2002, Infect. Immun., 70, 3371, 10.1128/IAI.70.7.3371-3381.2002

2002, J. Bacteriol., 184, 4025, 10.1128/JB.184.14.4025-4032.2002

2002, Mol. Microbiol., 43, 717, 10.1046/j.1365-2958.2002.02779.x

2002, Microbiology., 148, 3129, 10.1099/00221287-148-10-3129

2002, Mol. Microbiol., 45, 365, 10.1046/j.1365-2958.2002.03005.x

2001, Mol. Microbiol., 41, 423, 10.1046/j.1365-2958.2001.02525.x

2000, Nature., 407, 211, 10.1038/35025109

1998, Chem. Biol., 5, 631, 10.1016/S1074-5521(98)90291-5

2000, Proc. Natl. Acad. Sci. USA., 97, 5146, 10.1073/pnas.97.10.5146

2000, Arch. Biochem. Biophys., 373, 1, 10.1006/abbi.1999.1518

2002, J. Cell Biol., 158, 421, 10.1083/jcb.200205034

2001, J. Biol. Chem., 276, 19845, 10.1074/jbc.M100662200

2001, J. Biol. Chem., 276, 2228, 10.1074/jbc.C000652200

2001, Trends Microbiol., 9, 597, 10.1016/S0966-842X(01)02238-7

2001, Biochemistry., 40, 4703, 10.1021/bi015503b

1999, Proc. Natl. Acad. Sci. USA, 96, 11554, 10.1073/pnas.96.20.11554

2002, Infect. Immun., 70, 2787, 10.1128/IAI.70.6.2787-2795.2002

1999, Biochem. J., 343, 669, 10.1042/bj3430669

2002, Mol. Microbiol., 45, 1303, 10.1046/j.1365-2958.2002.03095.x

2002, J. Bacteriol., 184, 6760, 10.1128/JB.184.24.6760-6767.2002

2001, Nat. Rev. Mol. Cell Biol., 2, 578, 10.1038/35085062

2002, J. Clin. Invest., 110, 1151, 10.1172/JCI0215268

2003, Mol. Microbiol., 47, 103, 10.1046/j.1365-2958.2003.03313.x