Trajectory planning for satellite cluster reconfigurations with sequential convex programming method

Aerospace Science and Technology - Tập 136 - Trang 108216 - 2023
Lixiang Wang1, Dong Ye1, Yan Xiao1, Xianren Kong1
1Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China

Tài liệu tham khảo

Wei, 2022, Adaptive leader-following performance guaranteed formation control for multiple spacecraft with collision avoidance and connectivity assurance, Aerosp. Sci. Technol., 120, 10.1016/j.ast.2021.107266 Wang, 2021, Analytical solution of satellite formation impulsive reconfiguration considering passive safety constraints, Aerosp. Sci. Technol., 119, 10.1016/j.ast.2021.107108 Gao, 2022, Satellite cluster formation reconfiguration based on the bifurcating potential field, Aerosp., 9, 137, 10.3390/aerospace9030137 Zhang, 2015, Satellite cluster flight using on-off cyclic control, Acta Astronaut., 1, 10.1016/j.actaastro.2014.10.004 Hadaegh, 2016, On development of 100-gram-class spacecraft for swarm applications, IEEE Syst. J., 10, 673, 10.1109/JSYST.2014.2327972 Zou, 2016, Distributed attitude synchronization control for a group of flexible spacecraft using only attitude measurements, Inf. Sci., 343, 66, 10.1016/j.ins.2016.01.048 Zhang, 2015, Modeling and analysis of dynamics for spacecraft relative motion actuated by inter-satellite non-contacting force, Aerosp. Sci. Technol., 43, 236, 10.1016/j.ast.2015.03.003 Lagona, 2022, Autonomous trajectory optimisation for intelligent satellite systems and space traffic management, Acta Astronaut., 194, 185, 10.1016/j.actaastro.2022.01.027 Seong, 2018, Optimization of collision avoidance maneuver planning for cluster satellites in space debris explosion situation, Proc. Inst. Mech. Eng., G J. Aerosp. Eng., 232, 407, 10.1177/0954410016682270 Wang, 2019, Self-organizing control for satellite clusters using artificial potential function in terms of relative orbital elements, Aerosp. Sci. Technol., 84, 799, 10.1016/j.ast.2018.11.033 Li, 2021, Finite-time distributed hierarchical control for satellite cluster with collision avoidance, Aerosp. Sci. Technol., 114, 10.1016/j.ast.2021.106750 Denenberg, 2017, Debris avoidance maneuvers for spacecraft in a cluster, J. Guid. Control Dyn., 40, 1428, 10.2514/1.G002374 Zhang, 2018, Cooperative orbital control of multiple satellites via consensus, IEEE Trans. Aerosp. Electron. Syst., 1, 10.1109/TAES.2018.2826258 Luo, 2017, Consensus of satellite cluster flight using an energy-matching optimal control method, Adv. Space Res., 60, 2047, 10.1016/j.asr.2017.07.013 Nakka, 2022, Information-based guidance and control architecture for multi-spacecraft on-orbit inspection, J. Guid. Control Dyn., 45, 1184, 10.2514/1.G006278 Lu, 2013, Autonomous trajectory planning for rendezvous and proximity operations by conic optimization, J. Guid. Control Dyn., 36, 375, 10.2514/1.58436 Zhang, 2020, Two-stage cooperative guidance strategy using a prescribed-time optimal consensus method, Aerosp. Sci. Technol., 100, 10.1016/j.ast.2019.105641 Arya, 2021, Electric thruster mode-pruning strategies for trajectory-propulsion co-optimization, Aerosp. Sci. Technol., 116, 10.1016/j.ast.2021.106828 Sandberg, 2022, Autonomous trajectory generation algorithms for spacecraft slew maneuvers, Aerospace, 9, 135, 10.3390/aerospace9030135 Raigoza, 2022, Autonomous trajectory generation comparison for de-orbiting with multiple collision avoidance, Sensors, 22, 7066, 10.3390/s22187066 Wilt, 2022, Microsatellite uncertainty control using deterministic artificial intelligence, Sensors, 22, 8723, 10.3390/s22228723 Koeppen, 2019, Fast mesh refinement in pseudospectral optimal control, J. Guid. Control Dyn., 42, 711, 10.2514/1.G003904 Richards, 2002, Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming, J. Guid. Control Dyn., 25, 755, 10.2514/2.4943 Hua, 2019, Spacecraft formation reconfiguration trajectory planning with avoidance constraints using adaptive pigeon-inspired optimization, Sci. China Inf. Sci., 62, 10.1007/s11432-018-9691-8 Boyd, 2004 Yan, 2020, Unpowered approach and landing trajectory planning using second-order cone programming, Aerosp. Sci. Technol., 101, 10.1016/j.ast.2020.105841 Zhang, 2022, Trajectory optimization for spacecraft autonomous rendezvous and docking with compound state-triggered constraints, Aerosp. Sci. Technol., 127, 10.1016/j.ast.2022.107733 Liu, 2022, Convergence-guaranteed trajectory planning for a class of nonlinear systems with nonconvex state constraints, IEEE Trans. Aerosp. Electron. Syst., 58, 2243, 10.1109/TAES.2021.3131140 Rahmanpour, 2019, Energy-aware planning of motion and communication strategies for networked mobile robots, Inf. Sci., 497, 149, 10.1016/j.ins.2019.05.034 Scala, 2021, Design of optimal low-thrust manoeuvres for remote sensing multi-satellite formation flying in low Earth orbit, Adv. Space Res., 68, 4359, 10.1016/j.asr.2021.09.030 Roh, 2020, L1 penalized sequential convex programming for fast trajectory optimization: with application to optimal missile guidance, Int. J. Aeronaut. Space Sci., 21, 493, 10.1007/s42405-019-00230-0 Ma, 2022, Improved sequential convex programming using modified Chebyshev–Picard iteration for ascent trajectory optimization, Aerosp. Sci. Technol., 120, 10.1016/j.ast.2021.107234 Liu, 2022, Mars entry trajectory planning with range discretization and successive convexification, J. Guid. Control Dyn., 45, 755, 10.2514/1.G006237 Yingying, 2021, Trajectory design via convex optimization for six-degree-of-freedom asteroid powered landing, J. Guid. Control Dyn., 44, 779, 10.2514/1.G004434 Benedikter, 2021, Convex approach to three-dimensional launch vehicle ascent trajectory optimization, J. Guid. Control Dyn., 44, 1116, 10.2514/1.G005376 Pei, 2021, A new optimal guidance law with impact time and angle constraints based on sequential convex programming, Math. Probl. Eng., 1 Xia, 2021, Multi-UAV trajectory planning using gradient-based sequence minimal optimization, Robot. Auton. Syst., 137, 10.1016/j.robot.2021.103728 Xu, 2022, Trust-region filtered sequential convex programming for multi-UAV trajectory planning and collision avoidance, ISA Trans., 128, 664, 10.1016/j.isatra.2021.11.043 Sarno, 2020, A guidance approach to satellite formation reconfiguration based on convex optimization and genetic algorithms, Adv. Space Res., 65, 2003, 10.1016/j.asr.2020.01.033 Morgan, 2014, Model predictive control of swarms of spacecraft using sequential convex programming, J. Guid. Control Dyn., 37, 1725, 10.2514/1.G000218 Chu, 2016, Decentralized autonomous planning of cluster reconfiguration for fractionated spacecraft, Acta Astronaut., 123, 397, 10.1016/j.actaastro.2015.12.045 Kechichian, 1998, Motion in general elliptic orbit with respect to a dragging and precessing coordinate frame, J. Astronaut. Sci., 46, 25, 10.1007/BF03546191 Xu, 2008, Nonlinear dynamic equations of satellite relative motion around an oblate Earth, J. Guid. Control Dyn., 31, 1521, 10.2514/1.33616 Antczak, 2013, The exact l1 penalty function method for constrained nonsmooth invex optimization problems, vol. 391, 461 Patterson, 2010, GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming, ACM Trans. Math. Softw., 41, 1, 10.1145/2558904 Sturm, 1999, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (updated for version 1.05), Optim. Methods Softw., 11 Grant Morgan, 2012, Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations, J. Guid. Control Dyn., 35, 1492, 10.2514/1.55705