Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter

Fuzzy Sets and Systems - Tập 160 Số 7 - Trang 922-948 - 2009
Mahdi Aliyari Shoorehdeli1, Mohammad Teshnehlab1, Ali Khaki Sedigh1
1ISLAB, Faculty of Electrical Engineering, K. N. Toosi University of Technology, P.O. Box 16315-1355, Tehran, Iran#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. Akbar, R. Parra-Loera, Optimal self-tuning fuzzy controller, in: SPIE Conf. on Machine Tool In-Line, and Robot Sensors and Controls, 1995.

M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, A novel training algorithm in ANFIS structure, in: American Control Conf., 2006.

M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO, in: IEEE Internat. Fuzzy System Conf., 2007.

M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, Identification using ANFIS with intelligent hybrid stable learning algorithm approaches, Neural Comput. Appl., accepted for publication, doi:10.1007/s00521-007-0168-9.

Anderson, 1979

P.J. Angeline, Using selection to improve particle swami optimization, in: Proc. IEEE Congr. on Evolutionary Computation, 1998.

Atkinson, 1989

Bastian, 2000, Identifying fuzzy models utilizing genetic programming, Fuzzy Sets and Systems, 113, 335, 10.1016/S0165-0114(98)00086-4

Chaabene, 2008, Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems, Renewable Energy, 33, 1435, 10.1016/j.renene.2007.10.004

Chatterjee, 2006, An optimized Takagi–Sugeno type neuro-fuzzy system for modeling robot manipulators, Neural Comput. Appl., 15, 55, 10.1007/s00521-005-0008-8

Chen, 1998, Fuzzy Kalman filtering, J. Inform. Sci., 197, 10.1016/S0020-0255(98)10002-6

M.S. Chen, A comparative study of learning methods in tuning parameters of fuzzy membership functions, in: IEEE Conf. on System Man and Cybernetics, 1999.

Chen, 2007, Automatic design of hierarchical Takagi–Sugeno type fuzzy systems using evolutionary algorithms, IEEE Trans. Fuzzy Systems, 15, 10.1109/TFUZZ.2006.882472

Ciuprina, 2002, Use of intelligent-particle swarm optimization in electromagnetic, IEEE Trans. Magn., 38, 1037, 10.1109/20.996266

M. Clerc, The Swarm and the Queen: towards a deterministic and adaptive particle swarm optimization, in: Proc. IEEE Internat. Conf. on Evolutionary Computation, 1999.

Coello, 2004, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8, 256, 10.1109/TEVC.2004.826067

B. Demaya, R. Palm, S. Boverie, A. Titli, Multilevel qualitative and numerical optimization of fuzzy controller, in: IEEE Internat. Conf. on Fuzzy Systems, 1995.

J. Deskur, R. Muszynski, D. Sarnowski, Tuning and investigation of combined fuzzy controller, in: Internat. Conf. on Power Electronics and Variable Speed Drives, 1998.

R.C. Eberhart, X. Hu, Human tremor analysis using particle swarm optimization, in: Proceedings of the IEEE Congr. Evol. Comput., 1999.

R.C. Eberhart, X. Hu, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proc. IEEE Congr. on Evolutionary Computation, 2002.

R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc. Sixth Internat. Symp. on Micromachine Human Science, 1995.

R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proc. Congr. on Evolutionary Computation, 2000.

W. Eradus, H. Scholten, A. Udink ten Cate, Optimized fuzzy inference system for oestrus detection in dairy cattle, in: Internat. Symp. on Neuro-Fuzzy Systems, 1996.

Feldkamp, 2003, Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks, Neural Networks, 16, 683, 10.1016/S0893-6080(03)00127-8

Goldberg, 1989

Heo, 2006, Multiobjective control of power plants using particle swarm optimization techniques, IEEE Trans. Energy Convers., 21, 552, 10.1109/TEC.2005.858078

Ho, 2005, A particle swarm optimization-based method for multiobjective design optimizations, IEEE Trans. Magn., 41, 1756, 10.1109/TMAG.2005.846033

Hoehn, 1985, Averages on the move, Math. Mag., 58, 151, 10.2307/2689911

X. Hu, R.C. Eberhart, Y. Shi, Particle swarm with extended memory for multiobjective optimization, in: Proc. IEEE Swarm Intelligence Symp., 2003.

Iiguni, 1992, A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter, IEEE Trans. Signal Process., 40, 959, 10.1109/78.127966

Jacomet, 1997, On-line optimization of fuzzy systems, Inform. Sci., 98, 301, 10.1016/S0020-0255(96)00220-4

Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Systems Man and Cybernet., 23, 10.1109/21.256541

J.S.R. Jang, ANFIS: Adaptive-Network-based Fuzzy Inference System, Research reported, 1993.

J.S.R. Jang, Input selection for ANFIS learning, in: IEEE Internat. Conf. on Fuzzy Systems, 1996.

J.S.R. Jang, E. Mizutani, Levenberg–Marquardt method for ANFIS learning, in: Proc. Biennial Conf. of the North American Fuzzy Information Processing Society, 1996.

Jang, 1996

Juang, 2002, A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms, IEEE Trans. Fuzzy Systems, 10, 155, 10.1109/91.995118

Juang, 2007, Recurrent fuzzy network design using hybrid evolutionary learning algorithms, Neurocomputing, 70, 3001, 10.1016/j.neucom.2006.08.010

Juang, 1999, A recurrent self-organizing neural fuzzy inference network, IEEE Trans. Neural Networks, 10, 828, 10.1109/72.774232

Kadirkamanathan, 2006, Stability analysis of the particle dynamics in particle swarm optimizer, IEEE Trans. Evol. Comput., 10, 245, 10.1109/TEVC.2005.857077

Karakuzu, 2008, Fuzzy controller training using particle swarm optimization for nonlinear system control, ISA Trans., 47, 229, 10.1016/j.isatra.2007.09.003

J. Kennedy, The behavior of particle, in: Proc. Seventh Annual Conf. on Evolutionary Program, 1998.

Kim, 1995, Stability analysis and stabilization of fuzzy state space models, Fuzzy Sets and Systems, 71, 131, 10.1016/0165-0114(94)00190-I

Kollias, 1989, An adaptive least squares algorithm for the efficient training of artificial neural networks, IEEE Trans. Circuits Systems, 36, 1092, 10.1109/31.192419

Kovacevic, 1997, Neurofuzzy model-based weld fusion state estimation, IEEE Control Systems Mag., 17, 30, 10.1109/37.581293

M. Kumar, D.P. Garg, Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm, in: Proc. Japan—USA Symp. on Flexible Automation, 2004.

Lee, 2000, Identification and control of dynamic systems using recurrent fuzzy neural networks, IEEE Trans. Fuzzy Systems, 8, 349, 10.1109/91.868943

Leng, 2006, Design for self-organizing fuzzy neural networks based on genetic algorithms, IEEE Trans. Fuzzy Systems, 14, 755, 10.1109/TFUZZ.2006.877361

Leu, 2000, An extended Kalman filtering approach with a criterion to set its tuning parameters; application to a catalytic reactor, Comput. Chem. Eng., 1839, 10.1016/S0098-1354(00)00298-2

Lin, 2004, Prediction and identification using wavelet-based recurrent fuzzy neural network, IEEE Trans. Systems Man Cybernet. Part B Cybernet., 10, 2144, 10.1109/TSMCB.2004.833330

Lu, 2007, Generalized predictive control using recurrent fuzzy neural networks for industrial processes, J. Process Control, 17, 83, 10.1016/j.jprocont.2006.08.003

Mackey, 1977, Oscillation and chaos in physical control system, Science, 197, 287, 10.1126/science.267326

Magdalena, 1997, Fuzzy logic controller with learning through the evolution of its knowledge base, Internat. J. Approx. Reason., 16, 335, 10.1016/S0888-613X(97)80098-9

M. Mahfouf, M.-Y. Chen, D.A. Linkens, Adaptive weighted particle swarm optimization for multi-objective optimal design of alloy steels, in: Proc. of Parallel Problem Solving from Nature, 2004.

Mandic, 2001

F.M. Mascioli, G.M. Varazi, G. Martinelli, Constructive algorithm for neuro-fuzzy networks, in: Proc. Sixth IEEE Internat. Conf. on Fuzzy Systems, 1997.

Mastorocostas, 2002, A recurrent fuzzy-neural model for dynamic system identification, IEEE Trans. Systems Man Cybern. Part B Cybernet., 32, 176, 10.1109/3477.990874

Matía, 2006, The fuzzy Kalman filter: state estimation using possibilistic techniques, Fuzzy Sets and Systems, 157, 2145, 10.1016/j.fss.2006.05.003

Mendes, 2004, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8, 204, 10.1109/TEVC.2004.826074

Messerschmidt, 2004, Learning to play games using a PSO-based competitive learning approach, IEEE Trans. Evol. Comput., 8, 280, 10.1109/TEVC.2004.826070

V. Miranda, N. Fonseca, EPSO—evolutionary particle swarm optimization, a new algorithm with applications in power systems, in: Proc. IEEE Trans. Distribution Conf. on Exhibition, 2002.

V. Miranda, N. Fonseca, EPSO-best-of-two-worlds meta-heuristic applied to power system problems, in: Proc. Congr. on Evolutionary Computation, 2002.

S. Naka, T. Genji, T. Yura, Y. Fukuyama, Hybrid particle swarm optimization based distribution state estimation using constriction factor approach, in: Proc. Internat. Conf. on SCIS & ISIS, 2002.

Narendra, 1990, Identification and control of dynamical system using neural networks, IEEE Trans. Neural Networks, 1, 4, 10.1109/72.80202

Nounou, 2006, Multiscale fuzzy Kalman filtering, Eng. Appl. Artif. Intell., 19, 439, 10.1016/j.engappai.2005.11.001

E. Ozcan, C.K. Mohan, Particle swami optimization: surfing the waves, in: Proc. IEEE Congr. on Evolutionary Computation, 1999.

K.E. Parsopouls, M.N. Vrahatis, Particle swarm optimization method in multiobjective problems, in: Proc. ACM Symp. on Applied Computing and Evolutionary Computation, 2002.

Pearlmutter, 1995, Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Trans. Neural Networks, 6, 1212, 10.1109/72.410363

Polycarpou, 1992, Learning and convergence analysis of neural-type structured networks, IEEE Trans. Neural Networks, 3, 39, 10.1109/72.105416

Puskorius, 1994, Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks, IEEE Trans. Neural Networks, 5, 279, 10.1109/72.279191

P. Ramaswamy, M. Riese, R. Edwards, K. Lee, Two approaches for automating the tuning process of fuzzy logic controllers, in: IEEE Conf. on Decision and Control, 1993.

Ratnaweera, 2004, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8, 240, 10.1109/TEVC.2004.826071

Rong, 2006, Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction, Fuzzy Sets and Systems, 57, 1260, 10.1016/j.fss.2005.12.011

Satini, 1995, Block-structured recurrent neural networks, Neural Networks, 8, 135, 10.1016/0893-6080(94)00060-Y

Shah, 1992, Optimal filtering algorithms for fast learning in feedforward neural networks, Neural Networks, 5, 779, 10.1016/S0893-6080(05)80139-X

Shi, 1999, Implementation of evolutionary fuzzy systems, IEEE Trans. Fuzzy Systems, 7

Simon, 2002, Training fuzzy systems with the extended Kalman filter, Fuzzy Sets and Systems, 132, 189, 10.1016/S0165-0114(01)00241-X

Simon, 1995, Fuzzy logic for digital phase-locked loop filter design, IEEE Trans. Fuzzy Systems, 3, 211, 10.1109/91.388174

Singhal, 1989, Training multilayer perceptrons with the extended Kalman algorithm, Adv. Neural Inform. Process. System, 1, 133

Sonbol, 2006, Stability analysis of discrete TSK Type II/III systems, IEEE Trans. Fuzzy Systems, 14, 640, 10.1109/TFUZZ.2006.876729

Sonbol, 2006, TSK fuzzy systems types II and III stability analysis: continuous case, IEEE Trans. Systems Man and Cybernet. Part B, 36, 2, 10.1109/TSMCB.2005.852472

P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in: Proc. IEEE Congr. on Evolutionary Computation, 1999.

Sugeno, 1991, Successive identification of a fuzzy model and its applications to prediction of a complex system, Fuzzy Sets and Systems, 42, 315, 10.1016/0165-0114(91)90110-C

Surmann, 1996, Genetic optimization of a fuzzy system for charging batteries, IEEE Trans. Ind. Electron., 43, 541, 10.1109/41.538611

Takagi, 1991, NN-driven fuzzy reasoning, Internat. J. Approx. Reason., 5, 191, 10.1016/0888-613X(91)90008-A

Wachowiak, 2004, An approach to multimodal biomedical image registration utilizing particle swarm optimization, IEEE Trans. Evol. Comput., 8, 289, 10.1109/TEVC.2004.826068

E.A. Wan, A.T. Nelson, Dual Kalman filtering methods for nonlinear prediction, smoothing, and estimation, NIPS, 1996.

Wang, 1994

Wang, 2003, A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles, Eng. Appl. Artif. Intell., 15, 541, 10.1016/S0952-1976(03)00006-X

L. Wang, J. Mendel, Back-propagation of fuzzy systems as nonlinear dynamic system identifiers, in: IEEE Internat. Conf. on Fuzzy Systems, 1992.

Wang, 1999, Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter, Fuzzy Sets and Systems, 101, 353, 10.1016/S0165-0114(97)00098-5

Williams, 1989, A learning algorithm for continually running recurrent neural networks, Neural Comput., 1, 270, 10.1162/neco.1989.1.2.270

Wu, 1999, A new method for constructing membership functions and fuzzy rules from training examples, IEEE Trans. Systems Man Cybernet. Part B Cybernet., 29

Yager, 1994

Yang, 2002, A note on the trace inequality for products of Hermitian matrix power, J. Inequalities Pure Appl. Math., 3

Yoshida, 2000, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans. Power System, 15, 1232, 10.1109/59.898095

W. Yu, X. Li, Fuzzy neural modeling using stable learning algorithm, in: Proc. American Control Conf., 2003.

Yu, 2004, Fuzzy identification using fuzzy neural networks with stable learning algorithms, IEEE Trans. Fuzzy Systems, 12, 411, 10.1109/TFUZZ.2004.825067

Zhang, 1999, Recurrent neuro-fuzzy networks for nonlinear process modeling, IEEE Trans. Neural Networks, 10, 313, 10.1109/72.750562

Zhou, 2002, A new fuzzy neural network with fast learning algorithm and guaranteed stability for manufacturing process control, Fuzzy Sets and Systems, 132, 201, 10.1016/S0165-0114(01)00234-2