Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. Akbar, R. Parra-Loera, Optimal self-tuning fuzzy controller, in: SPIE Conf. on Machine Tool In-Line, and Robot Sensors and Controls, 1995.
M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, A novel training algorithm in ANFIS structure, in: American Control Conf., 2006.
M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO, in: IEEE Internat. Fuzzy System Conf., 2007.
M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, Identification using ANFIS with intelligent hybrid stable learning algorithm approaches, Neural Comput. Appl., accepted for publication, doi:10.1007/s00521-007-0168-9.
Anderson, 1979
P.J. Angeline, Using selection to improve particle swami optimization, in: Proc. IEEE Congr. on Evolutionary Computation, 1998.
Atkinson, 1989
Bastian, 2000, Identifying fuzzy models utilizing genetic programming, Fuzzy Sets and Systems, 113, 335, 10.1016/S0165-0114(98)00086-4
Chaabene, 2008, Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems, Renewable Energy, 33, 1435, 10.1016/j.renene.2007.10.004
Chatterjee, 2006, An optimized Takagi–Sugeno type neuro-fuzzy system for modeling robot manipulators, Neural Comput. Appl., 15, 55, 10.1007/s00521-005-0008-8
M.S. Chen, A comparative study of learning methods in tuning parameters of fuzzy membership functions, in: IEEE Conf. on System Man and Cybernetics, 1999.
Chen, 2007, Automatic design of hierarchical Takagi–Sugeno type fuzzy systems using evolutionary algorithms, IEEE Trans. Fuzzy Systems, 15, 10.1109/TFUZZ.2006.882472
Ciuprina, 2002, Use of intelligent-particle swarm optimization in electromagnetic, IEEE Trans. Magn., 38, 1037, 10.1109/20.996266
M. Clerc, The Swarm and the Queen: towards a deterministic and adaptive particle swarm optimization, in: Proc. IEEE Internat. Conf. on Evolutionary Computation, 1999.
Coello, 2004, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8, 256, 10.1109/TEVC.2004.826067
B. Demaya, R. Palm, S. Boverie, A. Titli, Multilevel qualitative and numerical optimization of fuzzy controller, in: IEEE Internat. Conf. on Fuzzy Systems, 1995.
J. Deskur, R. Muszynski, D. Sarnowski, Tuning and investigation of combined fuzzy controller, in: Internat. Conf. on Power Electronics and Variable Speed Drives, 1998.
R.C. Eberhart, X. Hu, Human tremor analysis using particle swarm optimization, in: Proceedings of the IEEE Congr. Evol. Comput., 1999.
R.C. Eberhart, X. Hu, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proc. IEEE Congr. on Evolutionary Computation, 2002.
R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc. Sixth Internat. Symp. on Micromachine Human Science, 1995.
R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proc. Congr. on Evolutionary Computation, 2000.
W. Eradus, H. Scholten, A. Udink ten Cate, Optimized fuzzy inference system for oestrus detection in dairy cattle, in: Internat. Symp. on Neuro-Fuzzy Systems, 1996.
Feldkamp, 2003, Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks, Neural Networks, 16, 683, 10.1016/S0893-6080(03)00127-8
Goldberg, 1989
Heo, 2006, Multiobjective control of power plants using particle swarm optimization techniques, IEEE Trans. Energy Convers., 21, 552, 10.1109/TEC.2005.858078
Ho, 2005, A particle swarm optimization-based method for multiobjective design optimizations, IEEE Trans. Magn., 41, 1756, 10.1109/TMAG.2005.846033
X. Hu, R.C. Eberhart, Y. Shi, Particle swarm with extended memory for multiobjective optimization, in: Proc. IEEE Swarm Intelligence Symp., 2003.
Iiguni, 1992, A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter, IEEE Trans. Signal Process., 40, 959, 10.1109/78.127966
Jacomet, 1997, On-line optimization of fuzzy systems, Inform. Sci., 98, 301, 10.1016/S0020-0255(96)00220-4
Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Systems Man and Cybernet., 23, 10.1109/21.256541
J.S.R. Jang, Input selection for ANFIS learning, in: IEEE Internat. Conf. on Fuzzy Systems, 1996.
J.S.R. Jang, E. Mizutani, Levenberg–Marquardt method for ANFIS learning, in: Proc. Biennial Conf. of the North American Fuzzy Information Processing Society, 1996.
Jang, 1996
Juang, 2002, A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms, IEEE Trans. Fuzzy Systems, 10, 155, 10.1109/91.995118
Juang, 2007, Recurrent fuzzy network design using hybrid evolutionary learning algorithms, Neurocomputing, 70, 3001, 10.1016/j.neucom.2006.08.010
Juang, 1999, A recurrent self-organizing neural fuzzy inference network, IEEE Trans. Neural Networks, 10, 828, 10.1109/72.774232
Kadirkamanathan, 2006, Stability analysis of the particle dynamics in particle swarm optimizer, IEEE Trans. Evol. Comput., 10, 245, 10.1109/TEVC.2005.857077
Karakuzu, 2008, Fuzzy controller training using particle swarm optimization for nonlinear system control, ISA Trans., 47, 229, 10.1016/j.isatra.2007.09.003
J. Kennedy, The behavior of particle, in: Proc. Seventh Annual Conf. on Evolutionary Program, 1998.
Kim, 1995, Stability analysis and stabilization of fuzzy state space models, Fuzzy Sets and Systems, 71, 131, 10.1016/0165-0114(94)00190-I
Kollias, 1989, An adaptive least squares algorithm for the efficient training of artificial neural networks, IEEE Trans. Circuits Systems, 36, 1092, 10.1109/31.192419
Kovacevic, 1997, Neurofuzzy model-based weld fusion state estimation, IEEE Control Systems Mag., 17, 30, 10.1109/37.581293
M. Kumar, D.P. Garg, Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm, in: Proc. Japan—USA Symp. on Flexible Automation, 2004.
Lee, 2000, Identification and control of dynamic systems using recurrent fuzzy neural networks, IEEE Trans. Fuzzy Systems, 8, 349, 10.1109/91.868943
Leng, 2006, Design for self-organizing fuzzy neural networks based on genetic algorithms, IEEE Trans. Fuzzy Systems, 14, 755, 10.1109/TFUZZ.2006.877361
Leu, 2000, An extended Kalman filtering approach with a criterion to set its tuning parameters; application to a catalytic reactor, Comput. Chem. Eng., 1839, 10.1016/S0098-1354(00)00298-2
Lin, 2004, Prediction and identification using wavelet-based recurrent fuzzy neural network, IEEE Trans. Systems Man Cybernet. Part B Cybernet., 10, 2144, 10.1109/TSMCB.2004.833330
Lu, 2007, Generalized predictive control using recurrent fuzzy neural networks for industrial processes, J. Process Control, 17, 83, 10.1016/j.jprocont.2006.08.003
Mackey, 1977, Oscillation and chaos in physical control system, Science, 197, 287, 10.1126/science.267326
Magdalena, 1997, Fuzzy logic controller with learning through the evolution of its knowledge base, Internat. J. Approx. Reason., 16, 335, 10.1016/S0888-613X(97)80098-9
M. Mahfouf, M.-Y. Chen, D.A. Linkens, Adaptive weighted particle swarm optimization for multi-objective optimal design of alloy steels, in: Proc. of Parallel Problem Solving from Nature, 2004.
Mandic, 2001
F.M. Mascioli, G.M. Varazi, G. Martinelli, Constructive algorithm for neuro-fuzzy networks, in: Proc. Sixth IEEE Internat. Conf. on Fuzzy Systems, 1997.
Mastorocostas, 2002, A recurrent fuzzy-neural model for dynamic system identification, IEEE Trans. Systems Man Cybern. Part B Cybernet., 32, 176, 10.1109/3477.990874
Matía, 2006, The fuzzy Kalman filter: state estimation using possibilistic techniques, Fuzzy Sets and Systems, 157, 2145, 10.1016/j.fss.2006.05.003
Mendes, 2004, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8, 204, 10.1109/TEVC.2004.826074
Messerschmidt, 2004, Learning to play games using a PSO-based competitive learning approach, IEEE Trans. Evol. Comput., 8, 280, 10.1109/TEVC.2004.826070
V. Miranda, N. Fonseca, EPSO—evolutionary particle swarm optimization, a new algorithm with applications in power systems, in: Proc. IEEE Trans. Distribution Conf. on Exhibition, 2002.
V. Miranda, N. Fonseca, EPSO-best-of-two-worlds meta-heuristic applied to power system problems, in: Proc. Congr. on Evolutionary Computation, 2002.
S. Naka, T. Genji, T. Yura, Y. Fukuyama, Hybrid particle swarm optimization based distribution state estimation using constriction factor approach, in: Proc. Internat. Conf. on SCIS & ISIS, 2002.
Narendra, 1990, Identification and control of dynamical system using neural networks, IEEE Trans. Neural Networks, 1, 4, 10.1109/72.80202
Nounou, 2006, Multiscale fuzzy Kalman filtering, Eng. Appl. Artif. Intell., 19, 439, 10.1016/j.engappai.2005.11.001
E. Ozcan, C.K. Mohan, Particle swami optimization: surfing the waves, in: Proc. IEEE Congr. on Evolutionary Computation, 1999.
K.E. Parsopouls, M.N. Vrahatis, Particle swarm optimization method in multiobjective problems, in: Proc. ACM Symp. on Applied Computing and Evolutionary Computation, 2002.
Pearlmutter, 1995, Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Trans. Neural Networks, 6, 1212, 10.1109/72.410363
Polycarpou, 1992, Learning and convergence analysis of neural-type structured networks, IEEE Trans. Neural Networks, 3, 39, 10.1109/72.105416
Puskorius, 1994, Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks, IEEE Trans. Neural Networks, 5, 279, 10.1109/72.279191
P. Ramaswamy, M. Riese, R. Edwards, K. Lee, Two approaches for automating the tuning process of fuzzy logic controllers, in: IEEE Conf. on Decision and Control, 1993.
Ratnaweera, 2004, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8, 240, 10.1109/TEVC.2004.826071
Rong, 2006, Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction, Fuzzy Sets and Systems, 57, 1260, 10.1016/j.fss.2005.12.011
Satini, 1995, Block-structured recurrent neural networks, Neural Networks, 8, 135, 10.1016/0893-6080(94)00060-Y
Shah, 1992, Optimal filtering algorithms for fast learning in feedforward neural networks, Neural Networks, 5, 779, 10.1016/S0893-6080(05)80139-X
Shi, 1999, Implementation of evolutionary fuzzy systems, IEEE Trans. Fuzzy Systems, 7
Simon, 2002, Training fuzzy systems with the extended Kalman filter, Fuzzy Sets and Systems, 132, 189, 10.1016/S0165-0114(01)00241-X
Simon, 1995, Fuzzy logic for digital phase-locked loop filter design, IEEE Trans. Fuzzy Systems, 3, 211, 10.1109/91.388174
Singhal, 1989, Training multilayer perceptrons with the extended Kalman algorithm, Adv. Neural Inform. Process. System, 1, 133
Sonbol, 2006, Stability analysis of discrete TSK Type II/III systems, IEEE Trans. Fuzzy Systems, 14, 640, 10.1109/TFUZZ.2006.876729
Sonbol, 2006, TSK fuzzy systems types II and III stability analysis: continuous case, IEEE Trans. Systems Man and Cybernet. Part B, 36, 2, 10.1109/TSMCB.2005.852472
P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in: Proc. IEEE Congr. on Evolutionary Computation, 1999.
Sugeno, 1991, Successive identification of a fuzzy model and its applications to prediction of a complex system, Fuzzy Sets and Systems, 42, 315, 10.1016/0165-0114(91)90110-C
Surmann, 1996, Genetic optimization of a fuzzy system for charging batteries, IEEE Trans. Ind. Electron., 43, 541, 10.1109/41.538611
Takagi, 1991, NN-driven fuzzy reasoning, Internat. J. Approx. Reason., 5, 191, 10.1016/0888-613X(91)90008-A
Wachowiak, 2004, An approach to multimodal biomedical image registration utilizing particle swarm optimization, IEEE Trans. Evol. Comput., 8, 289, 10.1109/TEVC.2004.826068
E.A. Wan, A.T. Nelson, Dual Kalman filtering methods for nonlinear prediction, smoothing, and estimation, NIPS, 1996.
Wang, 1994
Wang, 2003, A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles, Eng. Appl. Artif. Intell., 15, 541, 10.1016/S0952-1976(03)00006-X
L. Wang, J. Mendel, Back-propagation of fuzzy systems as nonlinear dynamic system identifiers, in: IEEE Internat. Conf. on Fuzzy Systems, 1992.
Wang, 1999, Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter, Fuzzy Sets and Systems, 101, 353, 10.1016/S0165-0114(97)00098-5
Williams, 1989, A learning algorithm for continually running recurrent neural networks, Neural Comput., 1, 270, 10.1162/neco.1989.1.2.270
Wu, 1999, A new method for constructing membership functions and fuzzy rules from training examples, IEEE Trans. Systems Man Cybernet. Part B Cybernet., 29
Yager, 1994
Yang, 2002, A note on the trace inequality for products of Hermitian matrix power, J. Inequalities Pure Appl. Math., 3
Yoshida, 2000, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans. Power System, 15, 1232, 10.1109/59.898095
W. Yu, X. Li, Fuzzy neural modeling using stable learning algorithm, in: Proc. American Control Conf., 2003.
Yu, 2004, Fuzzy identification using fuzzy neural networks with stable learning algorithms, IEEE Trans. Fuzzy Systems, 12, 411, 10.1109/TFUZZ.2004.825067
Zhang, 1999, Recurrent neuro-fuzzy networks for nonlinear process modeling, IEEE Trans. Neural Networks, 10, 313, 10.1109/72.750562