Trail camera networks provide insights into satellite-derived phenology for ecological studies

Nanfeng Liu1, Matthew Garcia1, Aditya Singh2, John D.J. Clare1, Jennifer L. Stenglein3, Benjamin Zuckerberg1, Eric L. Kruger1, Philip A. Townsend1
1Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, United States
2Department of Agricultural and Biological Engineering, University of Florida, United States
3Wisconsin Department of Natural Resources, United States

Tài liệu tham khảo

Ahl, 2006, Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS, Remote Sens. Environ., 104, 88, 10.1016/j.rse.2006.05.003 Atkinson, 2012, Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote Sens. Environ., 123, 400, 10.1016/j.rse.2012.04.001 Augspurger, 2003, Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest, Tree Physiol., 23, 517, 10.1093/treephys/23.8.517 Ault, 2015, Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices, J. Clim., 28, 8363, 10.1175/JCLI-D-14-00736.1 Badeck, 2004, Responses of spring phenology to climate change, New Phytol., 162, 295, 10.1111/j.1469-8137.2004.01059.x Banerjee, 2002, Prediction, Interpolation and Regression for Spatially Misaligned Data, Sankhyā Indian J. Stat. Ser. A, 64, 227 Bater, 2011, Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment, Environ. Monit. Assess., 180, 1, 10.1007/s10661-010-1768-x Beck, 2006, Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sens. Environ., 100, 321, 10.1016/j.rse.2005.10.021 Bischof, 2012, A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave?, Am. Nat., 180, 407, 10.1086/667590 Bolton, 2020, Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, 10.1016/j.rse.2020.111685 Brown, 2016, Using phenocams to monitor our changing Earth: Toward a global phenocam network, Front. Ecol. Environ., 14, 84, 10.1002/fee.1222 Chen, 2004, A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter, Remote Sens. Environ., 91, 332, 10.1016/j.rse.2004.03.014 Cheng, 2020, Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2, Remote Sens. Environ., 248, 112004, 10.1016/j.rse.2020.112004 Chmielewski, 2001, Response of tree phenology to climate change across Europe, Agric. For. Meteorol., 108, 101, 10.1016/S0168-1923(01)00233-7 Clare, 2019, Making inference with messy (citizen science) data: when are data accurate enough and how can they be improved?, Ecol. Appl., 29, e01849, 10.1002/eap.1849 Claverie, 2018, The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sens. Environ., 219, 145, 10.1016/j.rse.2018.09.002 Cleland, 2007, Shifting plant phenology in response to global change, Trends Ecol. Evol., 22, 357, 10.1016/j.tree.2007.04.003 Desai, 2010, Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape, J. Geophys. Res., 115, G00J02 de Beurs, K.M., Henebry, G.M., 2010. Spatio-temporal statistical methods for modelling land surface phenology, in: Phenological Research. Springer Netherlands, Dordrecht, pp. 177–208. 10.1007/978-90-481-3335-2_9. Delbart, 2005, Determination of phenological dates in boreal regions using normalized difference water index, Remote Sens. Environ., 97, 26, 10.1016/j.rse.2005.03.011 Dittman, 2007, Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook experimental forest, Ecology, 88, 1153, 10.1890/06-0834 Dong, 2015, Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms, Remote Sens. Environ., 160, 99, 10.1016/j.rse.2015.01.004 Eklundh, 2016, TIMESAT for processing time-series data from satellite sensors for land surface monitoring, 177, 10.1007/978-3-319-47037-5_9 Elmendorf, 2016, The plant phenology monitoring design for The National Ecological Observatory Network, Ecosphere, 7, e01303, 10.1002/ecs2.1303 Filippa, 2016, Phenopix: A R package for image-based vegetation phenology, Agric. For. Meteorol., 220, 141, 10.1016/j.agrformet.2016.01.006 Fisher, 2006, Green leaf phenology at Landsat resolution: Scaling from the field to the satellite, Remote Sens. Environ., 100, 265, 10.1016/j.rse.2005.10.022 Fisher, 2007, Cross-scalar satellite phenology from ground, Landsat, and MODIS data, Remote Sens. Environ., 109, 261, 10.1016/j.rse.2007.01.004 Ganguly, 2010, Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product, Remote Sens. Environ., 114, 1805, 10.1016/j.rse.2010.04.005 Gao, 2006, On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance, IEEE Trans. Geosci. Remote Sens., 44, 2207, 10.1109/TGRS.2006.872081 Garcia, 2016, Recent climatological trends and potential influences on forest phenology around western Lake Superior USA, J. Geophys. Res. Atmos., 121, 13364, 10.1002/2016JD025190 Garcia, M., 2018. Climatology and Forest Phenology During 1984–2013 Around Western Lake Superior, USA. University of Wisconsin-Madison. Guzinski, 2019, Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations, Remote Sens. Environ., 221, 157, 10.1016/j.rse.2018.11.019 Haggerty, B.P., Mazer, S.J., 2008. The Phenology Handbook: A guide to phenological monitoring for students, teachers, families, and nature enthusiasts. Santa Barbara, California. Hilker, 2009, A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS, Remote Sens. Environ., 113, 1613, 10.1016/j.rse.2009.03.007 Houborg, 2018, A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data, Remote Sens. Environ., 209, 211, 10.1016/j.rse.2018.02.067 Huang, 2010, Fusing optical and radar data to estimate sagebrush, herbaceous, and bare ground cover in Yellowstone, Remote Sens. Environ., 114, 251, 10.1016/j.rse.2009.09.013 Huete, 2002, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195, 10.1016/S0034-4257(02)00096-2 Hufkens, 2018, An integrated phenology modelling framework in R, Methods Ecol. Evol., 9, 1276, 10.1111/2041-210X.12970 Hufkens, 2012, Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology, Remote Sens. Environ., 117, 307, 10.1016/j.rse.2011.10.006 Jeong, 2011, Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008, Glob. Chang. Biol., 17, 2385, 10.1111/j.1365-2486.2011.02397.x Jeong, 2012, Uncertainties in terrestrial carbon budgets related to spring phenology, J. Geophys. Res. Biogeosciences, 117, 10.1029/2011JG001868 Jin, 2014, A physically based vegetation index for improved monitoring of plant phenology, Remote Sens. Environ., 152, 512, 10.1016/j.rse.2014.07.010 Jonsson, 2002, Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE Trans. Geosci. Remote Sens., 40, 1824, 10.1109/TGRS.2002.802519 Kato, 2002, Spatial and seasonal heterogeneity in understory light conditions caused by differential leaf flushing of deciduous overstory trees, Ecol. Res., 17, 687, 10.1046/j.1440-1703.2002.00529.x Keenan, 2015, The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models, Glob. Chang. Biol., 21, 2634, 10.1111/gcb.12890 Klosterman, 2014, Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery, Biogeosciences, 11, 4305, 10.5194/bg-11-4305-2014 Kobayashi, 2016, Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data, Remote Sens. Environ., 177, 160, 10.1016/j.rse.2016.02.020 Laskin, 2016, Estimating Understory Temperatures Using MODIS LST in Mixed Cordilleran Forests, Remote Sens., 8, 658, 10.3390/rs8080658 Laskin, 2019, Advances in phenology are conserved across scale in present and future climates, Nat. Clim. Chang., 9, 419, 10.1038/s41558-019-0454-4 Leach, 2019, Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies, Comput. Electron. Agric., 164, 104893, 10.1016/j.compag.2019.104893 Liang, 2012, Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers, Int. J. Biometeorol., 56, 343, 10.1007/s00484-011-0438-1 Liang, 2011, Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest, Remote Sens. Environ., 115, 143, 10.1016/j.rse.2010.08.013 Liang, 2014, A cross comparison of spatiotemporally enhanced springtime phenological measurements from satellites and ground in a Northern U.S. Mixed Forest, IEEE Trans. Geosci. Remote Sens., 52, 7513, 10.1109/TGRS.2014.2313558 Liu, 2015, Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest, Remote Sens. Environ., 160, 156, 10.1016/j.rse.2015.01.011 Locke, 2019, Managing a large citizen science project to monitor wildlife, Wildl. Soc. Bull., 43, 4, 10.1002/wsb.943 Mahall, 1978, A auantitative description of the vegetative phenology of herbs in a northern hardwood forest, Bot. Gaz., 139, 467, 10.1086/337022 Melaas, 2016, Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States, Glob. Chang. Biol., 22, 792, 10.1111/gcb.13122 Melaas, 2013, Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data, Remote Sens. Environ., 132, 176, 10.1016/j.rse.2013.01.011 Melaas, 2016, Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat, Remote Sens. Environ., 186, 452, 10.1016/j.rse.2016.09.014 Mishra, 2014, Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Remote Sens., 6, 12619, 10.3390/rs61212619 Monahan, 2016, Climate change is advancing spring onset across the U.S. national park system, Ecosphere, 7, e01465, 10.1002/ecs2.1465 Morin, 2009, Leaf phenology in 22 North American tree species during the 21st century, Glob. Chang. Biol., 15, 961, 10.1111/j.1365-2486.2008.01735.x Moody, 2001, Land-surface phenologies from AVHRR using the discrete Fourier transform, Remote Sens. Environ., 75, 305, 10.1016/S0034-4257(00)00175-9 Moore, 2016, Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography, Biogeosciences, 13, 5085, 10.5194/bg-13-5085-2016 Myneni, 1997, Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698, 10.1038/386698a0 Nasahara, 2015, Review: Development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN), Ecol. Res., 30, 211, 10.1007/s11284-014-1239-x Nijland, 2016, Imaging phenology: scaling from camera plots to landscapes, Remote Sens. Environ., 177, 13, 10.1016/j.rse.2016.02.018 Pacifici, 2017, Integrating multiple data sources in species distribution modeling: a framework for data fusion*, Ecology, 98, 840, 10.1002/ecy.1710 Pahlevan, 2019, Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems, Remote Sens. Environ., 220, 19, 10.1016/j.rse.2018.10.027 Penuelas, 2001, PHENOLOGY: Responses to a warming world, Science (80-.), 294, 793, 10.1126/science.1066860 Penuelas, 2009, Phenology feedbacks on climate change, Science (80-.), 324, 887, 10.1126/science.1173004 Piao, 2019, Plant phenology and global climate change: Current progresses and challenges, Glob. Chang. Biol., 25, 1922, 10.1111/gcb.14619 Prevéy, 2020, Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum), Agric. For. Meteorol., 280, 107803, 10.1016/j.agrformet.2019.107803 Reed, 1994, Measuring phenological variability from satellite imagery, J. Veg. Sci., 5, 703, 10.2307/3235884 Richardson, 2018, Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery, Sci. Data, 5, 180028, 10.1038/sdata.2018.28 Richardson, 2018, Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing, Sci. Rep., 8, 1, 10.1038/s41598-018-23804-6 Richardson, 2013, Climate change, phenology, and phenological control of vegetation feedbacks to the climate system, Agric. For. Meteorol., 169, 156, 10.1016/j.agrformet.2012.09.012 Richardson, A.J., O’Keefe, J.F., 2009. Phenological differences between understory and overstory : A case study using the long-term Harvard forest records. In: Noormets, A. (Ed.), Phenology of Ecosystem Processes. Springer, New York, pp. 87–117. Roy, 2008, Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data, Remote Sens. Environ., 112, 3112, 10.1016/j.rse.2008.03.009 Sadeh, 2021, Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring, Int. J. Appl. Earth Obs. Geoinf., 96, 102260 Schaaf, 2002, First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135, 10.1016/S0034-4257(02)00091-3 Sakamoto, 2005, A crop phenology detection method using time-series MODIS data, Remote Sens. Environ., 96, 366, 10.1016/j.rse.2005.03.008 Salas, 2020, Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: a comprehensive review, Geo-spatial Inf. Sci., 1 Schwartz, 2006, Onset of spring starting earlier across the Northern Hemisphere, Glob. Chang. Biol., 12, 343, 10.1111/j.1365-2486.2005.01097.x Schwartz, 2012, From Caprio’s lilacs to the USA National Phenology Network, Front. Ecol. Environ., 10, 324, 10.1890/110281 Schwartz, 2010, Intercomparing multiple measures of the onset of spring in eastern North America, Int. J. Climatol., 30, 1614, 10.1002/joc.2008 Serbin, 2009, Spatiotemporal Mapping of Temperature and Precipitation for the Development of a Multidecadal Climatic Dataset for Wisconsin, J. Appl. Meteorol. Climatol., 48, 742, 10.1175/2008JAMC1986.1 Sirén, 2018, Looking beyond wildlife: using remote cameras to evaluate accuracy of gridded snow data, Remote Sens. Ecol. Conserv., 4, 375, 10.1002/rse2.85 Sparling, 1967, Assimilation rates of some woodland herbs in Ontario, Bot. Gaz., 128, 160, 10.1086/336393 St. Peter, J., Hogland, J., Hebblewhite, M., Hurley, M., Hupp, N., Proffitt, K., 2018. Linking Phenological Indices from Digital Cameras in Idaho and Montana to MODIS NDVI. Remote Sens. 10, 1612. 10.3390/rs10101612. Steenweg, 2017, Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors, Front. Ecol. Environ., 15, 26, 10.1002/fee.1448 Townsend, P.A., Clare, J., Liu, N., Stenglein, J.L., Anhalt-Depies, C., Deelen, T.R. Van, Gilbert, N.A., Singh, A., Martin, K.J., Zuckerberg, B., 2020. Integrating remote sensing and jurisdictional observation networks to improve the resolution of ecological management (revision in review). Ecol. Appl. bioRxiv 10.1101/2020.06.08.140848. Uemura, 1994, Patterns of leaf phenology in forest understory, Can. J. Bot., 72, 409, 10.1139/b94-055 van Vliet, 2003, The European Phenology Network, Int. J. Biometeorol., 47, 202, 10.1007/s00484-003-0174-2 Vartanian, 2014, Assessing the impact of field of view on monitoring understory and overstory phenology using digital repeat photography, Can. J. Remote Sens., 40, 85 Vrieling, 2018, Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island, Remote Sens. Environ., 215, 517, 10.1016/j.rse.2018.03.014 Walker, 2012, Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology, Remote Sens. Environ., 117, 381, 10.1016/j.rse.2011.10.014 Walther, 2002, Ecological responses to recent climate change, Nature, 416, 389, 10.1038/416389a Wang, 2017, Fusion of Landsat 8 OLI and Sentinel-2 MSI Data, IEEE Trans. Geosci. Remote Sens., 55, 3885, 10.1109/TGRS.2017.2683444 Wang, 2016, Fusion of Sentinel-2 images, Remote Sens. Environ., 187, 241, 10.1016/j.rse.2016.10.030 Wegmueller, S., Leach, N., Townsend, P.A., n.d. LOESS radiometric correction for contiguous scenes (LORACCS): Improving the consistency of radiometry in high-resolution satellite image mosaics. Int. J. Appl. Earth Obs. Geoinf. White, 2014, Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty, Remote Sens. Environ., 148, 97, 10.1016/j.rse.2014.03.017 White, M.A., De Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O’keefe, J., Zhang, G., Nemani, R.R., Van Leeuwen, W.J.D., Brown, J.F., De Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T., Lauenroth, W.K., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Glob. Chang. Biol. 15, 2335–2359. 10.1111/j.1365-2486.2009.01910.x. Wingate, 2015, Interpreting canopy development and physiology using the EUROPhen camera network at flux sites, Biogeosci. Discuss., 12, 7979 Wolkovich, 2012, Warming experiments underpredict plant phenological responses to climate change, Nature, 485, 494, 10.1038/nature11014 Yu, 2016, An observation-based progression modeling approach to spring and autumn deciduous tree phenology, Int. J. Biometeorol., 60, 335, 10.1007/s00484-015-1031-9 Zhang, 2018, Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences, Remote Sens. Environ., 215, 482, 10.1016/j.rse.2018.04.031 Zhang, 2003, Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 84, 471, 10.1016/S0034-4257(02)00135-9 Zhang, 2017, Exploration of scaling effects on coarse resolution land surface phenology, Remote Sens. Environ., 190, 318, 10.1016/j.rse.2017.01.001 Zheng, 2017, Uncertainty of Remote Sensing Data in Monitoring Vegetation Phenology: A Comparison of MODIS C5 and C6 Vegetation Index Products on the Tibetan Plateau, Remote Sens., 9, 1288, 10.3390/rs9121288