Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tang, J. W. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere. 7 (2016).
Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agr. Forest Meteorol. 169, 156–173 (2013).
Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change. 4, 598–604 (2014).
Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. USA. 113, 5880–5885 (2016).
Schwartz, M. D. & Crawford, T. M. Detecting energy balance modifications at the onset of spring. Phys. Geogr. 22, 394–409 (2001).
Fitzjarrald, D. R., Acevedo, O. C. & Moore, K. E. Climatic consequences of leaf presence in the eastern United States. J. Clim. 14, 598–614 (2001).
Seyednasrollah, B., Domec, J.-C. & Clark, J. S. Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time. Agr Forest Meteorol. 269, 220–230 (2019).
Migliavacca, M. et al. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences. 9, 2063–2083 (2012).
Archetti, M., Richardson, A. D., O’Keefe, J. & Delpierre, N. Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest. Plos One. 8, e57373 (2013).
Richardson, A. D., Hufkens, K., Li, X. & Ault, T. R. Testing the Hopkins Law of Bioclimatics with PhenoCam data. Appl. Plant Sci. 7, e01228 (2019).
Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change. 6, 710 (2016).
Lesica, P. & Kittelson, P. M. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid Environ. 74, 1013–1017 (2010).
Browning, D. M., Karl, J. W., Morin, D., Richardson, A. D. & Tweedie, C. E. Phenocams bridge the gap between field and satellite observations in an arid grassland ecosystem. Remote Sens. 9, 1071 (2017).
Richardson, A. D., Weltzin, J. F. & Morisette, J. T. Integrating multiscale seasonal data for resource management. EOS. 98 (2017).
Richardson, A. D. Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery. New Phyto. (2018).
Schwartz, M. D., Betancourt, J. L. & Weltzin, J. F. From Caprio’s lilacs to the USA National Phenology Network. Front. Ecol. Environ. 10, 324–327 (2012).
Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
Melaas, E. K. et al. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 186, 452–464 (2016).
Klosterman, S. et al. Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography. Agr. Forest Meteorol. 248, 397–407 (2018).
Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).
Sonnentag, O. et al. Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology. 152, 159–177 (2012).
Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).
Richardson, A. D. et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia. 152, 323–334 (2007).
Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P. & Ollinger, S. V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 19, 1417–1428 (2009).
Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences. 11, 4305–4320 (2014).
Keenan, T. F. et al. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecol. Appl. 24, 1478–1489 (2014).
Richardson, A. D. et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data. 5, 180028 (2018).
Wingate, L. et al. Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences. 12, 5995–6015 (2015).
Nasahara, K. N. & Nagai, S. Review: Development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol. Res. 30, 211–223 (2015).
Hufkens, K. et al. Assimilating phenology datasets automatically across ICOS ecosystem stations. Int. Agrophys. 32, 677–687 (2018).
Moore, C. E. et al. Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography. Biogeosciences. 13, 5085–5102 (2016).
Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol Conserv. 195, 60–72 (2016).
Nagai, S. et al. 8 million phenological and sky images from 29 ecosystems from the Arctic to the tropics: the Phenological Eyes Network. Ecol Res. 33, 1091–1092 (2018).
Milliman, T. et al. PhenoCam Dataset v1.0: Digital Camera Imagery from the PhenoCam Network, 2000–2015. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1560 (2017).
Richardson, A. D. et al. PhenoCam Dataset v1.0: Vegetation Phenology from Digital Camera Imagery, 2000–2015. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1511 (2017).
Richardson, A. D., Klosterman, S. & Toomey, M. In Phenology: An Integrative Environmental Science(ed Schwartz, M.) 413–430 (Springer Netherlands, 2013).
Crall, A. et al. Volunteer recruitment and retention in online citizen science projects using marketing strategies: lessons from Season Spotter. JCOM. 16, A01 (2017).
Seyednasrollah, B. et al. PhenoCam Dataset v2.0: Vegetation Phenology from Digital Camera Imagery, 2000–2018. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1674 (2019).
Milliman, T. et al. PhenoCam Dataset v2.0: Digital Camera Imagery from the PhenoCam Network, 2000–2018. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1689 (2019).
Lam, E. Y. In Proceedings of the Ninth International Symposium on Consumer Electronics, 2005 (ISCE 2005). 134–139 (Macau, 2005).
Jacobs, N. et al. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 111–120 (Seattle, Washington, 2009).
Walker, D. A. et al. The Circumpolar Arctic vegetation map. Journal of Vegetation Science. 16, 267–282 (2005).
Ricklefs, R. E. The Economy of Nature 6th edn, (W. H. Freeman and Company New York, 2008).
Whittaker, R. Communities and Ecosystems 2nd edn, (Macmillan New York, 1975).
Seyednasrollah, B. drawROI: An interactive toolkit to extract phenological time series data from digital repeat photography. Zenodo, https://doi.org/10.5281/zenodo.1066588 (2017).
Seyednasrollah, B., Milliman, T. & Richardson, A. D. xROI: A Toolkit to Delinate Region of Interests (ROI’s) and Extract Time-series Data from Digital Repeat Photography Images. Zenodo, https://doi.org/10.5281/zenodo.1204366 (2018).
Seyednasrollah, B., Milliman, T. & Richardson, A. D. Data extraction from digital repeat photography using xROI: An interactive framework to facilitate the process. ISPRS Journal of Photogrammetry and Remote Sensing. 152, 132–144 (2019).
Seyednasrollah, B. hazer: Quantifying haze factor for RGB images to identify cloudy and foggy weather. Zenodo, https://doi.org/10.5281/zenodo.1008568 (2017).
Hufkens, K., Basler, D., Milliman, T., Melaas, E. K. & Richardson, A. D. An integrated phenology modelling framework in R. Methods in Ecology and Evolution. 9, 1276–1285 (2018).