Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).
Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol 169, 156–173 (2013).
Rosenzweig, C. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds Parry M. L., Canziani O. F., Palutikof J. P., van der Linden P. J, Hanson C. E. 79–131 (2007).
Linderholm, H. W. Growing season changes in the last century. Agric. For. Meteorol 137, 1–14 (2006).
Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change. 4, 598–604 (2014).
Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci 365, 3227–3246 (2010).
Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).
Migliavacca, M. et al. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9, 2063–2083 (2012).
Menzel, A. Phenology: Its importance to the global change community: An editorial comment. Climatic Change. 54, 379–385 (2002).
Wolfe, D. W. et al. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int. J. Biometeorol. 49, 303–309 (2005).
Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).
Justice, C. O., Townshend, J. R. G., Holben, B. N. & Tucker, C. J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 6, 1271–1318 (1985).
Richardson, A. D., Klosterman, S., Toomey, M. in Phenology: An Integrative environmental science (ed. Schwartz M. D. ) Ch. 22. (Springer Netherlands, 2013).
Sonnentag, O. et al. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol 152, 159–177 (2012).
Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).
Richardson, A. D. et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152, 323–334 (2007).
Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P. & Ollinger, S. V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 19, 1417–1428 (2009).
Keenan, T. F. et al. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecol. Appl. 24, 1478–1489 (2014).
Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).
Hufkens, K. et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321 (2012).
Shuai, Y. et al. Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics. Int. J. Remote Sens. 34, 5997–6016 (2013).
Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change. 6, 710–714 (2016).
Melaas, E. K., Friedl, M. A. & Richardson, A. D. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Glob. Change Biol. 22, 792–805 (2016).
Hufkens, K. et al. Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol. 18, 2365–2377 (2012).
Toomey, M. et al. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecol. Appl. 25, 99–115 (2015).
Elmore, A. J., Guinn, S. M., Minsley, B. J. & Richardson, A. D. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Change Biol. 18, 656–674 (2012).
White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Glob. Change Biol. 15, 2335–2359 (2009).
Kosmala, M. et al. Season Spotter: Using citizen science to validate and scale plant phenology from near-surface remote sensing. Remote Sens 8, 726 (2016).
Jacobs, N. et al. The global network of outdoor webcams: properties and applications. Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 111–120 (2009).
Amato, A., Lumbreras, F. & Sappa, A. D. A General-purpose crowdsourcing platform for mobile devices. Proceedings of the 9th International Conference on Computer Vision Theory and Applications 211–215 (2014).
Amato, A., Sappa, A. D., Fornés, A., Lumbreras, F. & Lladós, J. Divide and conquer: atomizing and parallelizing a task in a mobile crowdsourcing platform.P roceedings of the 2nd ACM International Workshop on Crowdsourcing for Multimedia 21–22 (2013).
Hurvich, C. M., Simonoff, J. S. & Tsai, C. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser B60, 271–293 (1998).
Killick, R., Fearnhead, P & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc 107, 1590–1598 (2012).
Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).
Thornton, P. E, Running, S. W. & White, M. A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190, 214–251 (1997).
Thornton, P.E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1328 (2016).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Channan, S., Collins, K. & Emanuel, W. R. Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory http://glcf.umd.edu/data/lc/ (2014).
Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
Olson, D. M. et al. Terrestrial ecoregions of the World: A new map of life on Earth. Bioscience 51, 933 (2001).
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).
Wingate, L. et al. Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences 12, 5995–6015 (2015).
Nasahara, K. N. & Nagai, S. Development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol. Res. 30, 211–223 (2015).
Petach, A. R., Toomey, M., Aubrecht, D. M. & Richardson, A. D. Monitoring vegetation phenology using an infrared-enabled security camera. Agric. For. Meteorol 195–196, 143–151 (2014).
Debevec, P. E. & Malik, J. Recovering high dynamic range radiance maps from photographs. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH ’97) 369–378 (1997).
Ide, R. & Oguma, H. Use of digital cameras for phenological observations. Ecol. Inform. 5, 339–347 (2010).
Yang, X., Tang, J. & Mustard, J. F . Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest. J. Geophys. Res. Biogeosciences 119, 181–191 (2014).
Richardson, A. D., Bailey, A. S., Denny, E. G., Martin, C. W. & O’Keefe, J. Phenology of a northern hardwood forest canopy. Glob. Change Biol. 12, 1174–1188 (2006).
Mizunuma, T. et al. The relationship between carbon dioxide uptake and canopy colour from two camera systems in a deciduous forest in southern England. Funct. Ecol. 27, 196–207 (2013).
Saitoh, T. M. et al. Assessing the use of camera-based indices for characterizing canopy phenology in relation to gross primary production in a deciduous broad-leaved and an evergreen coniferous forest in Japan. Ecol. Inform. 11, 45–54 (2012).
Migliavacca, M. et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol 151, 1325–1337 (2011).
Bowling, D. R. et al. Limitations to winter photosynthesis in a Rocky Mountain subalpine forest. Agric. For. Meteorol. 252: 241–255 (2018)
Ryu, Y. et al. Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agric. For. Meteorol 150, 1597–1606 (2010).
Melaas, E. K. et al. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 186, 452–464 (2016).
Baumann, M., Ozdogan, M., Richardson, A. D. & Radeloff, V. C. Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves. Int. J. Appl. Earth Obs. Geoinf. 54, 72–83 (2017).
Hufkens, K., Basler, J. D., Milliman, T., Melaas, E. & Richardson, A. D. An integrated phenology modelling framework in R.Methods Ecol. Evol. in press, doi:10.1111/2041-210X.12970 (2018).
Baldocchi, D. D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Change Biol. 9, 479–492 (2003).
Desai, A. R. et al. Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric. For. Meteorol 148, 821–838 (2008).
Denny, E. G. et al. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. Int. J. Biometeorol. 58, 591–601 (2014).
Jeong, S. J. & Medvigy, D. Macroscale prediction of autumn leaf coloration throughout the continental United States. Glob. Ecol. Biogeogr 23, 1245–1254 (2014).
Filippa, G. et al. Phenopix: A R package for image-based vegetation phenology. Agric. For. Meteorol 220, 141–150 (2016).
Richardson, A.D. et al. ORNL Distributed Active Archive Center https://doi.org/10.3334/ORNLDAAC/1511 (2017)