Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Theo dõi carbon hữu cơ và cấu trúc cộng đồng vi sinh vật trong các loại đất khác nhau về khoáng vật khi tiếp xúc với sự dao động redox
Tóm tắt
Canh tác lúa ngập nước được đặc trưng bởi các dao động redox và dẫn đến sự hình thành đất ruộng, thường đi kèm với sự tích lũy carbon hữu cơ trong đất (SOC). Tác động của sự dao động redox và loại đất nền đến số phận của carbon hữu cơ (OC) trong các loại đất ruộng vẫn chưa được biết đến. Do đó, chúng tôi đã mô phỏng sự phát triển của đất ruộng trong phòng thí nghiệm bằng cách tiếp xúc hai loại đất với thành phần khoáng vật khác nhau (Alisol và Andosol) với tám chu kỳ anoxic-oxic trong suốt 1 năm. Đất thường xuyên nhận được rơm lúa được đánh dấu 13C. Chúng tôi sử dụng một bộ mẫu thứ hai không có sự bổ sung rơm làm mẫu đối chứng, cùng với các mẫu dưới điều kiện oxic tĩnh có và không có rơm. Không gian đầu được phân tích cho khí carbon dioxide và methane cũng như các dấu hiệu δ13C của chúng, trong khi dung dịch đất được phân tích cho potential redox, pH, sắt hòa tan và carbon hữu cơ hòa tan (DOC và DO13C). Vào cuối thí nghiệm, khi tám vòng chu kỳ redox hoàn thành, chất hữu cơ gắn vào khoáng chất (MOM) được tách ra qua phân đoạn mật độ và được đặc trưng hóa cho δ13C, carbohydrate phi cellulose và phenol nguồn gốc lignin. Hơn nữa, các thay đổi trong cấu trúc cộng đồng vi sinh vật của đất cũng được đo. Đối với cả hai loại đất, dữ liệu không gian đầu đã xác nhận sự hô hấp ít hơn trong các đất có rơm bổ sung với sự dao động redox so với các loại đất dưới điều kiện oxic tĩnh. Dữ liệu δ13C đã chỉ ra rằng, bất kể loại đất, việc phân bổ carbon từ rơm vào MOM lớn hơn trong các đất có sự dao động redox so với các loại đất có điều kiện oxic tĩnh. Tuy nhiên, sự gia tăng ròng trong MOM sau một năm ấp ủ chỉ được quan sát thấy ở Andosol tương ứng, có thể là do khoáng chất phản ứng phong phú có khả năng hấp thụ OC. Trong Alisol, OC từ rơm rất có thể đã trao đổi MOM ban đầu. Một tiềm năng tích lũy lignin trong MOM của các loại đất được ấp ủ với rơm và dao động redox đã được quan sát thấy ở cả hai loại đất. Lignin và carbohydrate cho thấy nguồn gốc thực vật của MOM hình thành dưới sự dao động redox. Cấu trúc cộng đồng vi khuẩn giống nhau ban đầu của Alisol và Andosol đã thay đổi khác nhau dưới sự dao động redox. Sự thay đổi mạnh mẽ hơn ở Alisol cho thấy ít môi trường sống vi sinh vật được bảo vệ hơn. Tóm lại, quá trình xử lý carbon hữu cơ từ rơm trong các loại đất dưới sự dao động redox dường như độc lập với loại đất, trong khi sự tích lũy ròng của SOC cũng như sự phát triển của cấu trúc cộng đồng vi khuẩn có thể một phần phụ thuộc vào loại đất, cho thấy tác động của thành phần khoáng hóa của đất.
Từ khóa
Tài liệu tham khảo
Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65–72. https://doi.org/10.1007/BF00336349
Ayari A, Yang H, Xie S (2013) Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China. Front Earth Sci 7:384–394. https://doi.org/10.1007/s11707-013-0382-y
Balesdent J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41:587–596. https://doi.org/10.1111/j.1365-2389.1990.tb00228.x
Benner R, Maccubbin AE, Hodson RE (1984) Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl Environ Microbiol 47:998–1004
Bhattacharyya T, Pal DK, Ray SK et al (2013) Simulating change in soil organic carbon in two long term fertilizer experiments in India: with the RothC model. Clim Change Environ Sustain 1:104–117
Bierke A, Kaiser K, Guggenberger G (2008) Crop residue management effects on organic matter in paddy soils: the lignin component. Geoderma 146:48–57. https://doi.org/10.1016/j.geoderma.2008.05.004
Bonneville S, Behrends T, Van Cappellen P (2009) Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy relationship. Geochim Cosmochim Acta 73:5273–5282. https://doi.org/10.1016/j.gca.2009.06.006
Cao M, Gregson K, Marshall S et al (1996) Global methane emissions from rice paddies. Chemosphere 33:879–897. https://doi.org/10.1016/0045-6535(96)00231-7
Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
Cerli C, Celi L, Kalbitz K et al (2012) Separation of light and heavy organic matter fractions in soil: testing for proper density cut-off and dispersion level. Geoderma 170:403–416. https://doi.org/10.1016/j.geoderma.2011.10.009
Cheng Y-Q, Yang L-Z, Cao Z-H et al (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151:31–41. https://doi.org/10.1016/j.geoderma.2009.03.016
Christensen BT (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. In: Inc S-VNY (ed) Advances in soil science. Springer, New York, pp 1–90
Coby AJ, Picardal F, Shelobolina E et al (2011) Repeated anaerobic microbial redox cycling of iron. Appl Environ Microbiol 77:6036–6042. https://doi.org/10.1128/AEM.00276-11
Colberg PJ, Young LY (1982) Biodegradation of lignin-derived molecules under anaerobic conditions. Can J Microbiol 28:886–889. https://doi.org/10.1139/m82-132
Coward EK, Thompson AT, Plante AF (2017) Iron-mediated mineralogical control of organic matter accumulation in tropical soils. Geoderma 306:206–216. https://doi.org/10.1016/j.geoderma.2017.07.026
DeAngelis KM, Silver WL, Thompson AW, Firestone MK (2010) Microbial communities acclimate to recurring changes in soil redox potential status. Environ Microbiol 12:3137–3149. https://doi.org/10.1111/j.1462-2920.2010.02286.x
Dubinsky EA, Silver WL, Firestone MK (2010) Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology 91:2604–2612. https://doi.org/10.1890/09-1365.1
Eder E, Spielvogel S, Kölbl A et al (2010) Analysis of hydrolysable neutral sugars in mineral soils: improvement of alditol acetylation for gas chromatographic separation and measurement. Org Geochem 41:580–585. https://doi.org/10.1016/j.orggeochem.2010.02.009
Estendorfer J, Stempfhuber B, Haury P et al (2017) The influence of land use intensity on the plant-associated microbiome of Dactylis glomerata L. Front Plant Sci 8:930. https://doi.org/10.3389/fpls.2017.00930
Eusterhues K, Hädrich A, Neidhardt J et al (2014) Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite - ProQuest. Biogeosciences 11:4953–4966. https://doi.org/10.5194/bg-11-4953-2014
FAO (2006) Guidelines for soil description, 4th edn. FAO, Rome
Federherr E, Cerli C, Kirkels FMSA et al (2014) A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. I: development and validation. Rapid Commun Mass Spectrom 28:2559–2573. https://doi.org/10.1002/rcm.7052
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839
Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310. https://doi.org/10.1016/S0016-7061(02)00366-X
Gupta VVSR, Germida JJ (2015) Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol Biochem 80:A3–A9. https://doi.org/10.1016/j.soilbio.2014.09.002
Hackett WF, Connors WJ, Kirk TK, Zeikus JG (1977) Microbial decomposition of synthetic 14C-labeled lignins in nature: lignin biodegradation in a variety of natural materials. Appl Environ Microbiol 33:43–51
Hagedorn F, Kaiser K, Feyen H, Schleppi P (2000) Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J Environ Qual 29:288–297. https://doi.org/10.2134/jeq2000.00472425002900010036x
Hanke A, Cerli C, Muhr J et al (2013) Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. Eur J Soil Sci 64:476–487. https://doi.org/10.1111/ejss.12042
Heckman K, Lawrence CR, Harden JW (2018) A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma 312:24–35. https://doi.org/10.1016/j.geoderma.2017.09.043
Herndon E, AlBashaireh A, Singer D et al (2017) Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil. Geochim Cosmochim Acta 207:210–231. https://doi.org/10.1016/j.gca.2017.02.034
Hernes PJ, Kaiser K, Dyda RY, Cerli C (2013) Molecular trickery in soil organic matter: hidden lignin. Environ Sci Technol 47:9077–9085. https://doi.org/10.1021/es401019n
Hopmans EC, Schouten S, Pancost RD et al (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589
Huang D, Zhu P, Wang Z, Yu X (1998) A study and question on the decomposition rate of organic carbon under upland and submerged soil conditions. Acta Pedol Sin 35:482–492
Huang L-M, Thompson A, Zhang G-L et al (2015) The use of chronosequences in studies of paddy soil evolution: a review. Geoderma 237–238:199–210. https://doi.org/10.1016/j.geoderma.2014.09.007
Huang Y-T, Lowe DJ, Churchman GJ et al (2016) DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols. Appl Clay Sci 120:40–50. https://doi.org/10.1016/j.clay.2015.11.009
IUSS Working Group (2006) World reference base for soil resources: International soil classification system for naming soils and creating legends for soil maps. FAO, Rome
Kalbitz K, Solinger S, Park J-H et al (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304
Kalbitz K, Kaiser K, Fiedler S et al (2013) The carbon count of 2000 years of rice cultivation. Glob Change Biol 19:1107–1113. https://doi.org/10.1111/gcb.12080
Kirk G (2004) The biogeochemistry of submerged soils. Wiley, Chichester
Kirkels FMSA, Cerli C, Federherr E et al (2014) A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. II: optimization and assessment of analytical performance. Rapid Commun Mass Spectrom 28:2574–2586. https://doi.org/10.1002/rcm.7053
Kögel-Knabner I, Amelung W, Cao Z et al (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. https://doi.org/10.1016/j.geoderma.2010.03.009
Lammirato C, Miltner A, Wick LY, Kästner M (2010) Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals: interactions at solid–liquid interfaces and effects on enzyme activity levels. Soil Biol Biochem 42:2203–2210. https://doi.org/10.1016/j.soilbio.2010.08.018
Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. In: Poole RK (ed) Advances in microbial physiology, vol 49. Academic Press, Cambridge, pp 219–286
Lützow MV, Kögel-Knabner I I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. Eur J Soil Sci 57:426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
Matus F, Rumpel C, Neculman R et al (2014) Soil carbon storage and stabilisation in andic soils: a review. CATENA 120:102–110. https://doi.org/10.1016/j.catena.2014.04.008
Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363. https://doi.org/10.1016/0009-2541(94)90063-9
Mueller-Niggemann C, Utami SR, Marxen A et al (2016) Distribution of tetraether lipids in agricultural soils: differentiation between paddy and upland management. Biogeosciences 13:1647–1666. https://doi.org/10.5194/bg-13-1647-2016
Murase J, Frenzel P (2007) A methane-driven microbial food web in a wetland rice soil. Environ Microbiol 9:3025–3034. https://doi.org/10.1111/j.1462-2920.2007.01414.x
Neue HU, Scharpenseel HW (1987) Decomposition pattern of 14C-labeled rice straw in aerobic and submerged rice soils of the Philippines. Sci Total Environ 62:431–434. https://doi.org/10.1016/0048-9697(87)90533-X
Neue HU, Gaunt JL, Wang ZP et al (1997) Carbon in tropical wetlands. Geoderma 79:163–185. https://doi.org/10.1016/S0016-7061(97)00041-4
Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. https://doi.org/10.1007/BF02205590
Olk DC, Cassman KG, Randall EW et al (1996) Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur J Soil Sci 47:293–303. https://doi.org/10.1111/j.1365-2389.1996.tb01403.x
Ouyang Y, Li X (2013) Recent research progress on soil microbial responses to drying–rewetting cycles. Acta Ecol Sin 33:1–6. https://doi.org/10.1016/j.chnaes.2012.12.001
Pan G, Li L, Wu L, Zhang X (2003) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Change Biol 10:79–92. https://doi.org/10.1046/j.1529-8817.2003.00717.x
Pett-Ridge J, Firestone MK (2005) Redox fluctuation structures microbial communities in a wet tropical soil. Appl Environ Microbiol 71:6998–7007. https://doi.org/10.1128/AEM.71.11.6998-7007.2005
Poggenburg C, Mikutta R, Schippers A et al (2018) Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochim Cosmochim Acta 224:223–248. https://doi.org/10.1016/j.gca.2018.01.004
Postma D (1993) The reactivity of iron oxides in sediments: a kinetic approach. Geochim Cosmochim Acta 57:5027–5034. https://doi.org/10.1016/S0016-7037(05)80015-8
Reddy KR, Patrick WH (1983) Effects of aeration on reactivity and mobility of soil constituents. Chem Mobil React Soil Syst. https://doi.org/10.2136/sssaspecpub11.c2
Roden EE (2003) Fe(III) oxide reactivity toward biological versus chemical reduction. Environ Sci Technol 37:1319–1324. https://doi.org/10.1021/es026038o
Sahrawat KL (1998) Flooding soil: a great equalizer of diversity in soil chemical fertility. Oryza 35:300–305
Sahrawat KL (2004) Organic matter accumulation in submerged soils. Adv Agron 81:169–201
Said-Pullicino D, Miniotti EF, Sodano M et al (2016) Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices. Plant Soil 401:273–290. https://doi.org/10.1007/s11104-015-2751-7
Saidy AR, Smernik RJ, Baldock JA et al (2012) Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174:104–110. https://doi.org/10.1016/j.geoderma.2011.12.030
Schöler A, Jacquiod S, Vestergaard G et al (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489. https://doi.org/10.1007/s00374-017-1205-1
Schouten S, Huguet C, Hopmans EC et al (2007) Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944. https://doi.org/10.1021/ac062339v
Stookey LL (1970) Ferrozine: a new spectrophotometric reagent for iron. Anal Chem 42:779–781. https://doi.org/10.1021/ac60289a016
Team RC (2008) A language and environment for statistical computing. In: R foundation for statistical computing. https://www.R-project.org
Teh YA, Dubinsky EA, Silver WL, Carlson CM (2008) Suppression of methanogenesis by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: Implications for ecosystem methane flux. Glob Change Biol 14:413–422
Totsche KU, Amelung W, Gerzabek MH et al (2018) Microaggregates in soils. J Plant Nutr Soil Sci 181:104–136. https://doi.org/10.1002/jpln.201600451
Urbanski L, Kölbl A, Lehndorff E et al (2017) Paddy management on different soil types does not promote lignin accumulation. J Plant Nutr Soil Sci 180:366–380. https://doi.org/10.1002/jpln.201600542
Wickham H (2009) Elegant graphics for data analysis. In: ggplot2. Use R. Springer, New York
Winkler P, Kaiser K, Kölbl A et al (2016) Response of Vertisols, Andosols, and Alisols to paddy management. Geoderma 261:23–35. https://doi.org/10.1016/j.geoderma.2015.06.017
Winkler P, Kaiser K, Thompson A et al (2018) Contrasting evolution of iron phase composition in soils exposed to redox fluctuations. Geochim Cosmochim Acta 235:89–102. https://doi.org/10.1016/j.gca.2018.05.019
Wissing L, Kölbl A, Vogelsang V et al (2011) Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. CATENA 87:376–385. https://doi.org/10.1016/j.catena.2011.07.007
Wissing L, Kölbl A, Häusler W et al (2013) Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res 126:60–71. https://doi.org/10.1016/j.still.2012.08.004
Yan X, Ohara T, Akimoto H (2003) Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Glob Change Biol 9:237–254. https://doi.org/10.1046/j.1365-2486.2003.00564.x
Yan J, Pan G, Li L et al (2010) Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. J Colloid Interface Sci 348:565–570. https://doi.org/10.1016/j.jcis.2010.04.044
Yan X, Zhou H, Zhu QH et al (2013) Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res 130:42–51. https://doi.org/10.1016/j.still.2013.01.013
Zeikus JG, Wellstein AL, Kirk TK (1982) Molecular basis for the biodegradative recalcitrance of lignin in anaerobic environments. FEMS Microbiol Lett 15:193–197. https://doi.org/10.1111/j.1574-6968.1982.tb00066.x
Zhang M, He Z (2004) Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma 118:167–179. https://doi.org/10.1016/S0016-7061(03)00191-5
Zhang P, Zheng J, Pan G et al (2007) Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids Surf B Biointerfaces 58:264–270. https://doi.org/10.1016/j.colsurfb.2007.03.018
Ziegler F, Kögel I, Zech W (1986) Alteration of gymnosperm and angiosperm lignin during decomposition in forest humus layers. Z Für Pflanzenernähr Bodenkd 149:323–331. https://doi.org/10.1002/jpln.19861490309
