Theo dõi tỷ lệ xói mòn trong cảnh quan trầm tích loess của đồi Trzebnica (Ba Lan) qua thời gian sử dụng các đồng vị phóng xạ và đồng vị tươi sinh học

Springer Science and Business Media LLC - Tập 21 - Trang 2952-2968 - 2021
Aleksandra Loba1, Jarosław Waroszewski1, Dmitry Tikhomirov2, Fancesca Calitri2,3, Marcus Christl4, Marcin Sykuła5, Markus Egli2
1Institute of Soil Science and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
2Department of Geography, University of Zurich, Zurich, Switzerland
3Leibniz-Centre for Agricultural Landscape Research (ZALF), Muncheberg, Germany
4Laboratory of Ion Beam Physics, ETH-Zurich, Zurich, Switzerland
5Department of Soil Science and Landscape Management, Nicolaus Copernicus University in Toruń, Torun, Poland

Tóm tắt

Cảnh quan loess rất nhạy cảm với xói mòn đất, điều này ảnh hưởng đến sự ổn định và năng suất của đất. Xói mòn diễn ra không đồng nhất theo thời gian và không gian, quyết định xem đất có hình thành hay bị thoái hóa. Mặc dù tính biến động không gian của xói mòn thường được đánh giá thông qua mô hình hóa hoặc các phép đo tại chỗ, nhưng các xu hướng tạm thời trong hàng thập kỷ đến hàng thiên niên kỷ thường bị thiếu. Trong nghiên cứu này, chúng tôi đã xác định tỷ lệ xói mòn dài hạn và ngắn hạn để theo dõi động lực học của các trầm tích loess ở khu vực Tây Nam Ba Lan. Chúng tôi đã định lượng tỷ lệ xói mòn lâu dài (hàng thiên niên kỷ) bằng cách sử dụng đồng vị tươi sinh học (10Be tại chỗ) và tỷ lệ xói mòn ngắn hạn (hàng thập kỷ) bằng các đồng vị phóng xạ (239+240Pu). Quy trình xói mòn được nghiên cứu trong hai đoạn dốc với 12 hố đất có các đặc điểm xói mòn khác nhau. Để tham khảo, một hồ sơ đất chưa bị xáo trộn dưới rừng tự nhiên đã được lấy mẫu. Tỷ lệ xói mòn dài hạn dao động từ 0,44 đến 0,85 t ha−1 năm−1, trong khi tỷ lệ xói mòn ngắn hạn thay đổi từ 1,2 đến 10,9 t ha−1 năm−1 và dường như đáng tin cậy. Tỷ lệ xói mòn ngắn hạn cao gấp tới 10 lần tỷ lệ dài hạn. Tỷ lệ xói mòn đất tương đối nhất quán với địa hình, với xói mòn gia tăng ở những khu vực dốc hơn và giảm ở phần thấp hơn của dốc, trong khi vẫn duy trì giá trị cao. Tỷ lệ xói mòn đất đã gia tăng trong vài thập kỷ qua do sự tăng cường nông nghiệp và có thể là do biến đổi khí hậu. Các giá trị đo được nằm xa trên các tỷ lệ xói mòn có thể chấp nhận được, và đất đã được phát hiện là mất cân đối nghiêm trọng với hiện tượng cạn kiệt mạnh mẽ các tầng đất sản xuất.

Từ khóa

#xói mòn đất #trầm tích loess #đồng vị phóng xạ #đồng vị tươi sinh học #nghiên cứu môi trường

Tài liệu tham khảo

Alewell C, Egli M, Meusburger K (2015) An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. J Soils Sediments 15:1383–1399. https://doi.org/10.1007/s11368-014-0920-6 Alewell C, Meusburger K, Juretzko G et al (2014) Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere 103:274–280. https://doi.org/10.1016/j.chemosphere.2013.12.016 Alewell C, Pitois A, Meusburger K et al (2017) 239+240 Pu from “contaminant” to soil erosion tracer: where do we stand? Earth-Science Rev 172:107–123. https://doi.org/10.1016/j.earscirev.2017.07.009 Altermann M, Rinklebe J, Merbach I et al (2005) Chernozem - soil of the year 2005. J Plant Nutr Soil Sci 168:725–740. https://doi.org/10.1002/jpln.200521814 Anioł-Kwiatkowska J (1998) Endangered and rare segetal species in the microregion Trzebnica Hills. Acta Univ Lodz 13:169–176 Arata L, Alewell C, Frenkel E et al (2016a) Modelling deposition and erosion rates with radioNuclides (MODERN) - part 2: a comparison of different models to convert 239+240Pu inventories into soil redistribution rates at unploughed sites. J Environ Radioact 162–163:97–106. https://doi.org/10.1016/j.jenvrad.2016.05.009 Arata L, Meusburger K, Frenkel E et al (2016b) Modelling deposition and erosion rates with radionuclides (MODERN) - part 1: a new conversion model to derive soil redistribution rates from inventories of fallout radionuclides. J Environ Radioact 162–163:45–55. https://doi.org/10.1016/j.jenvrad.2016.05.008 Bac S, Rojek M (2012) Meteorologia i klimatologia w inżynierii środowiska. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195. https://doi.org/10.1016/j.quageo.2007.12.001 Calitri F, Sommer M, Norton K et al (2019) Tracing the temporal evolution of soil redistribution rates in an agricultural landscape using 239+240 Pu and 10 Be. Earth Surf Process Landforms esp.4612. https://doi.org/10.1002/esp.4612 Calitri F, Sommer M, van der Meij MW, Egli M (2020) Soil erosion along a transect in a forested catchment: Recent or ancient processes? CATENA 194:104683. https://doi.org/10.1016/j.catena.2020.104683 Cerdan O, Govers G, Le Bissonais Y et al (2010) Rates and spatial variation of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177. https://doi.org/10.1016/j.geomorph.2010.06.011 Chengde S, Beer J, Tungsheng L et al (1992) 10Be in Chinese loess. Earth Planet Sci Lett 109:169–177. https://doi.org/10.1016/0012-821X(92)90081-6 Christl M, Vockenhuber C, Kubik PW et al (2013) The ETH Zurich AMS facilities: performance parameters and reference materials. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 294:29–38. https://doi.org/10.1016/j.nimb.2012.03.004 De Vos W, Tarvainen T (2006) Interpretation of Geochemical Maps, Additional Tables, Figures, Maps and Related Publications. In: De Vos W, Tarvainen T (ed) Geochemical Atlas of Europe. Part 2, Otamedia Oy, Espoo, pp. 690 Delmas M, Pak LT, Cerdan O et al (2012) Erosion and sediment budget across scale: A case study in a catchment of the European loess belt. J Hydrol 420–421:255–263. https://doi.org/10.1016/j.jhydrol.2011.12.008 Dreibrodt S, Jarecki H, Lubos C et al (2013) Holocene soil formation and soil erosion at a slope beneath the Neolithic earthwork Salzmünde (Saxony-Anhalt, Germany). CATENA 107:1–14. https://doi.org/10.1016/j.catena.2013.03.002 Dreibrodt S, Lomax J, Nelle O et al (2010) Are mid-latitude slopes sensitive to climatic oscillations? Implications from an Early Holocene sequence of slope deposits and buried soils from eastern Germany. Geomorphology 122:351–369. https://doi.org/10.1016/j.geomorph.2010.05.015 Dyjor S (1970) Seria poznańska w Polsce Zachodniej. Kwart Geol 14:819–834 Dyjor S, Kościówko H (1982) Formacja trzeciorzędowa południowo-zachodniej Polski i związane z nią perspektywy wybranych surowców. Biul Inst Geol 341 Egli M, Norton K, Dahms D (2014) Soil formation rates on silicate parent material in alpine environments: different approaches, different results? Geoderma 213:320–333 Evrard O, Vandaele K, van Wesemael B, Bielders CL (2008) A grassed waterway and earthen dams to control muddy floods from a cultivated catchment of the Belgian loess belt. Geomorphology 100:419–428. https://doi.org/10.1016/j.geomorph.2008.01.010 FAO (ed) (2006) Guidelines for soil description, 4rd edn. FAO, Rome Foucher A, Salvador-Blanes S, Evrard O et al (2014) Increase in soil erosion after agricultural intensification: evidence from a lowland basin in France. Anthropocene 7:30–41. https://doi.org/10.1016/j.ancene.2015.02.001 Gerlach R, Fischer P, Eckmeier E, Hilgers A (2012) Buried dark soil horizons and archaeological features in the Neolithic settlement region of the Lower Rhine area, NW Germany: Formation, geochemistry and chronostratigraphy. Quat Int 265:191–204. https://doi.org/10.1016/j.quaint.2011.10.007 Gillijns K, Poesen J, Deckers J (2005) On the characteristics and origin of closed depressions in loess-derived soils in Europe—a case study from central Belgium. CATENA 60:43–58. https://doi.org/10.1016/j.catena.2004.10.001 Glina B, Waroszewski J, Kabal C (2014) Water retention of the loess-derived Luvisols with lamellic illuvial horizon in the Trzebnica Hills (SW Poland). Soil Sci Annu 65:18–24. https://doi.org/10.2478/ssa-2014-0003 Golosov VN, Collins AL, Dobrovolskaya NG et al (2021) Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture. Geoderma 381:114678. https://doi.org/10.1016/j.geoderma.2020.114678 Graly JA, Bierman PR, Reusser LJ, Pavich MJ (2010) Meteoric 10Be in soil profiles - a global meta-analysis. Geochim Cosmochim Acta 74:6814–6829. https://doi.org/10.1016/j.gca.2010.08.036 Gu ZY, Lal D, Liu TS et al (1997) Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic 10 Be. Geochim Cosmochim Acta 61:5221–5231. https://doi.org/10.1016/S0016-7037(97)00313-X Guzmán G, Laguna A, Cañasveras JC et al (2015) Study of sediment movement in an irrigated maize–cotton system combining rainfall simulations, sediment tracers and soil erosion models. J Hydrol 524:227–242. https://doi.org/10.1016/j.jhydrol.2015.02.033 Haase D, Fink J, Haase G et al (2007) Loess in Europe-its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quat Sci Rev 26:1301–1312. https://doi.org/10.1016/j.quascirev.2007.02.003 Henkner J, Ahlrichs JJ, Downey S et al (2017) Archaeopedology and chronostratigraphy of colluvial deposits as a proxy for regional land use history (Baar, southwest Germany). CATENA 155:93–113. https://doi.org/10.1016/j.catena.2017.03.005 Hidy AJ, Gosse JC, Pederson JL et al (2010) A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochemistry Geophys Geosystems 11:Q0AA10. https://doi.org/10.1029/2010GC003084 Iurian A-R, Phaneuf MO, Mabit L (2015) Mobility and bioavailability of radionuclides in soils. In: Walther C, Gupta DK (ed) Radionuclides in the environment: influence of chemical speciation and plant uptake on radionuclide migration. Springer, pp 37–59 IUSS Working Group WRB (2015) World Reference Base for soil 721 resources 2014, update 2015 international soil classification 722 system for naming soils and creating legends for soil maps. World 723 soil resources reports no. 106. FAO, Rome Jagercikova M, Cornu S, Bourlès D et al (2015) Understanding long-term soil processes using meteoric 10Be: A first attempt on loessic deposits. Quat Geochronol 27:11–21. https://doi.org/10.1016/j.quageo.2014.12.003 Jary Z (1996) Chronostratygrafia oraz warunki sedymentacji lessów południowo-zachodniej Polski na przykładzie Płaskowyżu Głubczyckiego i Wzgórz Trzebnickich. Studia Geograficzne LXIII Uniwersytetu Wrocławskiego, Wrocław.pdf Jary Z, Ciszek D (2013) Late Pleistocene loess-palaeosol sequences in Poland and western Ukraine. Quat Int 296:37–50. https://doi.org/10.1016/j.quaint.2012.07.009 Jelinski NA, Campforts B, Willenbring JK et al (2019) Meteoric beryllium-10 as a tracer of erosion due to postsettlement land use in West-Central Minnesota, USA. J Geophys Res Earth Surf 124:874–901. https://doi.org/10.1029/2018JF004720 Kabała C, Marzec M (2010) Vertical and spatial diversity of grain-size distribution in Luvisols developed from loess in south-western Poland. Rocz Glebozn LXI:52–64 Kabała C, Musztyfaga E, Gałka B, et al (2016) Conversion of soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: conclusions for soil management, environmental monitoring, and international soil databases. Polish J Environ Stud 25:647–653. https://doi.org/10.15244/pjoes/61549 Kabała C, Przybył A, Krupski M et al (2019) Origin, age and transformation of Chernozems in northern Central Europe – new data from Neolithic earthen barrows in SW Poland. CATENA 180:83–102. https://doi.org/10.1016/j.catena.2019.04.014 Kaszubkiewicz. J, Tasz W, Kawałko D, Serafin R (2011) USLE model simplification proposal for application in a small agricultural catchment area. Rocz Glebozn LXII:75–81 Ketterer ME, Hafer KM, Link CL et al (2004) Resolving global versus local/regional Pu sources in the environment using sector ICP-MS. J Anal at Spectrom 19:241–245. https://doi.org/10.1039/B302903D Ketterer ME, Zheng J, Yamada M (2011) Applications of transuranics as tracers and chronometers in the environment. In: Baskaran M (ed.) Handbook of environmental isotope geochemistry, Advances in Isotope Geochemistry. Springer, pp. 395–417. https://doi.org/10.1007/978-3-642-10637-8_20 Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587. https://doi.org/10.1016/0016-7037(92)90401-4 Kołodyńska-Gawrysiak R, Poesen J, Gawrysiak L (2018) Assessment of long-term Holocene soil erosion rates in Polish loess areas using sedimentary archives from closed depressions. Earth Surf Process Landforms 43:978–1000. https://doi.org/10.1002/esp.4296 Kopittke PM, Menzies NW, Wang P et al (2019) Soil and the intensification of agriculture for global food security. Environ Int 132:105078. https://doi.org/10.1016/j.envint.2019.105078 Krzyszkowski D (1993) Pleistocene stratigraphy near Trzebnica, Silesian Rampart, Southwestern Poland. Bull Pol Acad Sci Kundzewicz ZW, Matczak P (2012) Climate change regional review: Poland. Wiley Interdiscip Rev Clim Chang 3:297–311. https://doi.org/10.1002/wcc.175 Labaz B, Musztyfaga E, Waroszewski J et al (2018) Landscape-related transformation and differentiation of Chernozems – catenary approach in the Silesian Lowland, SW Poland. CATENA 161:63–76. https://doi.org/10.1016/j.catena.2017.10.003 Lehmkuhl F, Nett JJ, Pötter S et al (2020) Loess landscapes of Europe – mapping, geomorphology, and zonal differentiation Earth-Science Rev 103496 https://doi.org/10.1016/j.earscirev.2020.103496 Licznar M, Kowaliński S, Drozd J (1981) Changes of some physical properties of soils of the głubczyce plateau under the water erosion effect. Rocz Glebozn XXXII:45–52 Licznar M, Licznar P (2002) Erodibility of Trzebnica Hills loessive soils. Zesz Probl Postępów Nauk Rol 487:129–136 Licznar P, Sasik J, Żmuda R (2002) Prognozowanie erozji wodnej w małych zlewniach rolniczych Wzgórz Trzebnickich. Zesz Probl Postępów Nauk Rol 487:137–146 Licznar S, Kowaliński S, Licznar M (1988) Zastosowanie metod mikromorfologicznych i submikromorfologicznych w badaniu gleb erodowanych. Rocz Glebozn 39:21–34 Loba A, Sykuła M, Kierczak J et al (2020) In situ weathering of rocks or aeolian silt deposition: key parameters for verifying parent material and pedogenesis in the Opawskie Mountains—a case study from SW Poland. J Soils Sediments 20:435–451. https://doi.org/10.1007/s11368-019-02377-5 McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophys Geosystems 2:n/a-n/a. https://doi.org/10.1029/2000GC000109 Meusburger K, Mabit L, Ketterer M et al (2016) A multi-radionuclide approach to evaluate the suitability of 239 + 240Pu as soil erosion tracer. Sci Total Environ 566–567:1489–1499. https://doi.org/10.1016/j.scitotenv.2016.06.035 Muhs DR (2013) The geologic records of dust in the quaternary. Aeolian Res 9:3–48. https://doi.org/10.1016/j.aeolia.2012.08.001 Musso A, Ketterer ME, Greinwald K et al (2020) Rapid decrease of soil erosion rates with soil formation and vegetation development in periglacial areas. Earth Surf Process Landforms 45:2824–2839. https://doi.org/10.1002/esp.4932 Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717. https://doi.org/10.1038/299715a0 Nishiizumi K, Imamura M, Caffee MW et al (2007) Absolute calibration of 10Be AMS standards. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 258:403–413. https://doi.org/10.1016/j.nimb.2007.01.297 Pachucki C (1952) Badania geologiczne na arkuszach 1:100 000 Trzebnica i Syców. Biul Inst Geol, 66:355–294 Pasquini AI, Campodonico VA, Rouzaut S, Giampaoli V (2017) Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma 295:53–68. https://doi.org/10.1016/j.geoderma.2017.01.033 Poręba G, Śnieszko Z, Moska P et al (2019) Interpretation of soil erosion in a Polish loess area using OSL, 137Cs, 210Pbex, dendrochronology and micromorphology – case study: Biedrzykowice site (s Poland). Geochronometria 46:57–78. https://doi.org/10.1515/geochr-2015-0109 Poręba G, Śnieszko Z, Moska P (2011) Some aspects of age assessment of Holocene loess colluvium: OSL and 137Cs dating of sediment from Biała agricultural area, South Poland. Quat Int 240:44–51. https://doi.org/10.1016/j.quaint.2011.02.005 Poręba GJ, Śnieszko Z, Moska P (2015) Application of OSL dating and 137Cs measurements to reconstruct the history of water erosion: a case study of a Holocene colluvium in Świerklany, south Poland. Quat Int 374:189–197. https://doi.org/10.1016/j.quaint.2015.04.004 Rafalska-Przysucha A, Rejman J (2015) Assessment of soil erosion in the catchment of two combined closed depressions in the Naleczow Plateau (Lublin Upland). Acta Agrophysica 22:91–101. Rejman J, Brodowski R (2010) Evaluation of water erosion under sugar beet and spri wheat on loess soil on runoff plots. Prace i Studia Geograficzne 45:215–228 Rejman J, Brodowski R, Iglik I (2008) Annual variations of soil erodibility of silt loam developed from loess based on 10-years runoff plot studies. Ann Warsaw Univ Life Sci - SGGW L Reclam 39:77–83. https://doi.org/10.2478/v10060-008-0007-4 Rickson RJ (2014) Can control of soil erosion mitigate water pollution by sediments? Sci Total Environ 468–469:1187–1197. https://doi.org/10.1016/j.scitotenv.2013.05.057 Routschek A, Schmidt J, Kreienkamp F (2014) Impact of climate change on soil erosion - a high-resolution projection on catchment scale until 2100 in Saxony/Germany. CATENA 121:99–109. https://doi.org/10.1016/j.catena.2014.04.019 Sartori M, Evans ME, Heller F et al (2005) The last glacial/interglacial cycle at two sites in the Chinese Loess Plateau: mineral magnetic, grain-size and 10Be measurements and estimates of palaeoprecipitation. Palaeogeogr Palaeoclimatol Palaeoecol 222:145–160. https://doi.org/10.1016/j.palaeo.2005.03.013 Schaetzl RJ, Attig JW (2013) The loess cover of northeastern Wisconsin. Quat Res 79:199–214. https://doi.org/10.1016/j.yqres.2012.12.004 Steinhoff-Knopp B, Burkhard B (2018) Soil erosion by water in Northern Germany: long-term monitoring results from Lower Saxony. Catena 165:299–309. https://doi.org/10.1016/j.catena.2018.02.017 Święchowicz J (2016) Susceptibility to water erosion soils derived from loess-like deposits (Brzesko Foreland, Southern Poland). In: Święchowicz J, Michno A (ed) Wybrane zagadnienia geomorfologii eolicznej. Monografia dedykowana dr hab. Bogdanie Izmaiłow w 44. rocznicę pracy naukowej. IGiGP UJ, Kraków, pp. 332–366 Świtoniak M, Mroczek P, Bednarek R (2016) Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes - case study: Brodnica and Chełmno Lake Districts (North Poland). CATENA 137:583–595. https://doi.org/10.1016/j.catena.2014.09.005 Van Oost K, Govers G, Van Muysen W (2003) A process-based conversion model for caesium-137 derived erosion rates on agricultural land: an integrated spatial approach. Earth Surf Process Landforms 28:187–207. https://doi.org/10.1002/esp.446 van Reeuwijk L (2002) Procedures for soil analysis, 6th edn. Wageningen, ISRIC Van Rompaey AJJ, Verstraeten G, Van Oost K et al (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf Process Landforms 26:1221–1236. https://doi.org/10.1002/esp.275 Verheijen FGA, Jones RJA, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth-Science Rev 94:23–38 Verstraeten G, Poesen J (2001) Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40:123–144. https://doi.org/10.1016/S0169-555X(01)00040-X von Blanckenburg F, Belshaw NS, O’Nions RK (1996) Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis. Chem Geol 129:93–99. https://doi.org/10.1016/0009-2541(95)00157-3 Walling DE, Quine TA (1990) Calibration of caesium-137 measurements to provide quantitative erosion rate data. L Degrad Dev 2:161–175. https://doi.org/10.1002/ldr.3400020302 Waroszewski J, Egli M, Brandová D et al (2018) Identifying slope processes over time and their imprint in soils of medium-high mountains of Central Europe (the Karkonosze Mountains, Poland). Earth Surf Process Landforms 43:1195–1212. https://doi.org/10.1002/esp.4305 Willenbring JK, von Blanckenburg F (2010) Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth-Science Rev 98:105–122. https://doi.org/10.1016/j.earscirev.2009.10.008 Wyshnytzky CE, Ouimet WB, McCarthy J et al (2015) Meteoric 10Be, clay, and extractable iron depth profiles in the Colorado Front Range: implications for understanding soil mixing and erosion. CATENA 127:32–45. https://doi.org/10.1016/j.catena.2014.12.008 Xu Y, Qiao J, Pan S et al (2015) Plutonium as a tracer for soil erosion assessment in northeast China. Sci Total Environ 511:176–185. https://doi.org/10.1016/j.scitotenv.2014.12.006 Yang MY, Tian JL, Liu PL (2006) Investigating the spatial distribution of soil erosion and deposition in a small catchment on the Loess Plateau of China, using 137Cs. Soil Tillage Res 87:186–193. https://doi.org/10.1016/j.still.2005.03.010 Zádorová T, Penížek V (2018) Formation, morphology and classification of colluvial soils: a review. Eur J Soil Sci 69:577–591. https://doi.org/10.1111/ejss.12673 Zhang K, Pan S, Liu Z et al (2018) Vertical distributions and source identification of the radionuclides 239Pu and 240Pu in the sediments of the Liao River estuary, China. J Environ Radioact 181:78–84. https://doi.org/10.1016/j.jenvrad.2017.10.016 Zhang X, Higgit DL, Walling DE (1990) A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrol Sci J 35:243–252. https://doi.org/10.1080/02626669009492427 Zhou W, Xie X, Beck W et al (2015) Recent progress of 10Be tracer studies in Chinese loess. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 361:548–553. https://doi.org/10.1016/j.nimb.2015.02.061 Zmuda R, Szewrański S, Kowalczyk T et al (2009) Landscape alteration in view of soil protection from water erosion - an example of the Mielnica watershed. J Water L Dev 13:161–175. https://doi.org/10.2478/v10025-010-0026-5 Zollinger B, Alewell C, Kneisel C et al (2015) The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239 + 240Pu, meteoric 10Be) and stable isotopes (δ13C) in the eastern Swiss Alps. J Soils Sediments 15:1400–1419. https://doi.org/10.1007/s11368-014-0881-9