Hóa học vi lượng của các bao thể olivin trong kim cương từ mỏ Akwatia, Craton Tây Phi: những hệ quả cho quá trình hình thành kim cương và địa nhiệt-áp suất

Jan C.M. De Hoog1, Thomas Stachel2, Jeff W. Harris3
1School of GeoSciences, The University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, EH9 3FE, UK
2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton AB T6G 2E3, Canada
3School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Glasgow G12 8QQ, UK

Tóm tắt

Tóm tắtĐã đo nồng độ vi lượng trong olivin và các garnet đồng sinh cùng có mặt trong kim cương từ mỏ Akwatia (Ghana, Craton Tây Phi) nhằm chỉ ra rằng olivin có thể cung cấp thông tin tương tự về nhiệt độ cân bằng, quá trình hình thành kim cương và các quá trình trong manti như garnet. Hệ thống vi lượng có thể được sử dụng để phân biệt olivin từ nguồn harzburgitic so với lherzolitic: nếu tỷ lệ Ca/Al của olivin thấp hơn xu hướng lherzolite trong manti (Ca/Al < 2.2), thì chúng có nguồn gốc từ manti harzburgitic, và garnet đồng sinh đều là garnet G10 subcalcic. Đối với olivin harzburgitic không thể xác định theo cách này, hàm lượng Na và Ca có thể được sử dụng: các bao thể olivin với < 60 µg/g Na và Na/Al < 0.7 đều là harzburgitic, trong khi các bao thể có > 300 µg/g Ca hoặc > 60 µg/g Na thuộc về lherzolitic. Đo đạc nhiệt độ áp suất địa chất truyền thống chỉ ra rằng kim cương Akwatia hình thành và tồn tại gần một geotherm dẫn điện 39 mW/m2. Một giá trị tương tự có thể được suy ra từ Al trong đo đạc nhiệt độ của olivin, với TAl-ol dao động từ 1020 đến 1325 °C. Nhiệt độ trong garnet Ni trung bình có vẻ cao hơn một chút (TNi-grt = 1115–1335 °C) và sự tương quan giữa hai nhiệt kế là yếu, điều này có thể không chỉ do những không chắc chắn lớn trong các phép chuẩn hóa, mà còn do mất cân bằng giữa các bao thể từ cùng một viên kim cương. Canxi trong olivin không nên được sử dụng như một geothermobarometer cho olivin harzburgitic, và thường cho ra các ước lượng PT không thực tế cho olivin lherzolitic. Các bao thể olivin trong kim cương chỉ ra rằng chúng hình thành trong một môi trường bị cạn kiệt cực kỳ (thấp Ti, Ca, Na, cao Cr#) mà không có clinopyroxene dư. Chúng khác biệt so với olivin từ xenoliths manti cho thấy hàm lượng Ti cao hơn, biến đổi hơn và thấp hơn Cr#. Do đó, hầu hết các bao thể olivin trong kim cương Akwatia đã thoát khỏi các quá trình tái bổ sung đã ảnh hưởng đến hầu hết xenoliths manti. Bao thể lherzolitic có thể là kết quả của việc bổ sung lại sau khi trải qua quá trình nóng chảy cao. Các cation hóa trị ba có vẻ hành xử khác nhau trong các bao thể olivin kim cương harzburgitic so với các bao thể lherzolitic và olivin từ xenoliths manti. Một số crom hóa trị hai được dự đoán có mặt trong hầu hết các bao thể olivin, điều này có thể giải thích sự tập trung cao lên đến 0.16 wt% Cr2O3 được quan sát thấy ở một số bao thể kim cương. Sự không đồng nhất mạnh mẽ của Cr, V và Al trong một số bao thể cũng có thể dẫn đến hàm lượng Cr cao rõ rệt, và có thể là do các quá trình giai đoạn muộn trong quá trình thượng sinh. Tuy nhiên, nói chung, các bao thể olivin trong kim cương có hàm lượng Cr và V thấp hơn mong đợi so với xenoliths manti. Hoạt động Na giảm trong các harzburgites bị cạn kiệt hạn chế việc hấp thụ Cr, V và Sc thông qua sự trao đổi Na–M3+. Ngược lại, sự phân chia Al trong các harzburgites không bị giảm đáng kể so với lherzolites, có thể do việc hấp thụ Al trong olivin thông qua trao đổi Al–Al.

Từ khóa

#Kim cương #olivin #vi lượng #địa nhiệt-áp suất #hình thành kim cương #Craton Tây Phi

Tài liệu tham khảo

Ballhaus C, Berry RF, Green DH (1991) High-pressure experimental calibration of the olivine-ortho-pyroxene-spinel oxygen geobarometer—implications for the oxidation-state of the upper mantle. Contrib Mineral Petrol 107(1):27–40. https://doi.org/10.1007/BF00311183

Ballhaus C, Berry RF, Green DH (1994) High-pressure experimental calibration of the olivine-ortho-pyroxene-spinel oxygen geobarometer—implications for the oxidation-state of the upper-mantle. Contrib Mineral Petrol 118(1):109. https://doi.org/10.1007/BF00310615

Batanova VG, Sobolev AV, Kuzmin DV (2015) Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem Geol 419:149–157. https://doi.org/10.1016/j.chemgeo.2015.10.042

Berry AJ, Shelley JMG, Foran GJ, O’Neill HS, Scott DR (2003) A furnace design for XANES spectroscopy of silicate melts under controlled oxygen fugacities and temperatures to 1773 K. J Synchrotron Radiat 10:332–336

Berry AJ, Hermann J, O’Neill HSC, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33(11):869–872. https://doi.org/10.1130/g21759.1

Berry AJ, O’Neill HSC, Hermann J, Scott DR (2007) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261(1–2):134–142. https://doi.org/10.1016/j.epsl.2007.06.021

Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites: Implications for melting and enrichment processes in island arcs. Chem Geol 165(1–2):67–85

Brey GP, Köhler T (1990) Geothermobarometry in 4-phase lherzolites. 2. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378

Brey GP, Shu Q (2018) The birth, growth and ageing of the Kaapvaal subcratonic mantle. Mineral Petrol 112:23–41. https://doi.org/10.1007/s00710-018-0577-8

Bulanova GP (1995) The formation of diamond. J Geochem Explor 53(1–3):1–23. https://doi.org/10.1016/0375-6742(94)00016-5

Bussweiler Y, Brey GP, Pearson DG, Stachel T, Stern RA, Hardman MF, Kjarsgaard BA, Jackson SE (2017) The aluminum-in-olivine thermometer for mantle peridotites—experimental versus empirical calibration and potential applications. Lithos 272:301–314. https://doi.org/10.1016/j.lithos.2016.12.015

Canales DG, Norman DI (2003) The Akwatia diamond field, Ghana, West Africa: source rocks. In: Geological Society of America Annual Meeting, Seattle, vol 35, p 230

Canil D (1996) An experimental calibration of the ‘‘nickel in garnet’’ geothermometer with applications—reply. Contrib Mineral Petrol 124(2):219–223

Canil D (1999a) The Ni-in-garnet geothermometer: calibration at natural abundances. Contrib Mineral Petrol 136(3):240–246

Canil D (1999b) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta 63(3–4):557–572. https://doi.org/10.1016/S0016-7037(98)00287-7

Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: archean to present. Earth Planet Sci Lett 195(1–2):75–90. https://doi.org/10.1016/s0012-821x(01)00582-9

Canil D, Oneill HS, Pearson DG, Rudnick RL, Mcdonough WF, Carswell DA (1994) Ferric iron in peridotites and mantle oxidation-states. Earth Planet Sci Lett 123(1–4):205–220. https://doi.org/10.1016/0012-821x(94)90268-2

Chirico PG, Malpeli KC, Anum S, Phillips EC (2010) Alluvial diamond resource potential and production capacity assessment of Ghana. USGS Scientific Investigations Report 2010–5045, p 25

Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and associated xenoliths. J Geol 83(5):589–607. https://doi.org/10.2307/30061056

De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270(1–4):196–215. https://doi.org/10.1016/j.chemgeo.2009.11.017

Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240:402–425. https://doi.org/10.1016/j.lithos.2015.11.012

Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated Lavas. Contrib Mineral Petrol 86(1):54–76

Foley SF, Andronikov AV, Jacob DE, Melzer S (2006) Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift. Geochim Cosmochim Acta 70(12):3096–3120. https://doi.org/10.1016/j.gca.2006.03.010

Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191. https://doi.org/10.1016/j.epsl.2012.11.025

Glaser SM, Foley SF, Gunther D (1999) Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 48(1–4):263–285. https://doi.org/10.1016/S0024-4937(99)00032-8

Griffin WL, Ryan CG (1996) An experimental calibration of the ‘‘nickel in garnet’’ geothermometer with applications—discussion. Contrib Mineral Petrol 124(2):216–218

Griffin WL, Cousens DR, Ryan CG, Sie SH, Suter GF (1989) Ni in chrome pyrope garnets—a new geothermometer. Contrib Mineral Petrol 103(2):199–202. https://doi.org/10.1007/Bf00378505

Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77(1–4):841–857. https://doi.org/10.1016/j.lithos.2004.04.012

Grütter H, Latti D, Menzies A (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47(4):801–820. https://doi.org/10.1093/petrology.egi096

Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. In: Glover JE, Harris PG (eds) Kimberlite occurrence and origin: a basis for conceptual models in exploration, vol 8. Publs Geology Department and University Extension, University of Western Australia, Perth, pp 143–166

Gurney JJ, Helmstaedt H, Moore RO (1993) A review of the use and application of mantle mineral geochemistry in diamond exploration. Pure Appl Chem 65(12):2423–2442. https://doi.org/10.1351/pac199365122423

Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB (2010) Diamonds through Time. Econ Geol 105(3):689–712. https://doi.org/10.2113/gsecongeo.105.3.689

Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86(4):359–373. https://doi.org/10.1007/bf01187140

Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307(1–2):59–70. https://doi.org/10.1016/j.epsl.2011.04.034

Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

Hermann J, O’Neill HSC, Berry AJ (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 148(6):746–760. https://doi.org/10.1007/s00410-004-0637-4

Hervig RL, Smith JV (1982) Temperature-dependent distribution of Cr between olivine and pyroxenes in lherzolite xenoliths. Contrib Mineral Petrol 81(3):184–189

Hervig RL, Smith JV, Steele IM (1980a) Fertile and barren Al-Cr-spinel harzburgites from the upper mantle—ion and electron-probe analyses of trace-elements in olivine and ortho-pyroxene—relation to lherzolites. Earth Planet Sci Lett 50(1):41–58

Hervig RL, Smith JV, Steele IM, Gurney JJ, Meyer HOA, Harris JW (1980b) Diamonds—minor elements in silicate inclusions—pressure-temperature implications. J Geophys Res 85(B12):6919–6929

Hervig RL, Smith JV, Dawson JB (1986) Lherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel. Trans R Soc Edinb Earth Scis 77:181–201

Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Miner 12(3):543–570. https://doi.org/10.1127/0935-1221/2000/0012-0543

Ionov DA (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the Andesitic Avacha Volcano, Kamchatka. J Petrol 51(1–2):327–361. https://doi.org/10.1093/petrology/egp090

Irving AJ, Frey FA (1978) Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochim Cosmochim Acta 42(6):771–787

Ivanic TJ (2007) The chromite-garnet peridotite assemblages and their role in the evolution of the mantle lithosphere. Unpublished Ph.D. thesis. University of Edinburgh, Edinburgh

Jarosewich E, Nelen J, Norber J (1980) Reference samples for electron probe analysis. Geostand Newslett 4(1):43–47

Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302

Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81(14):2467–2470

Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77(1–4):639–646. https://doi.org/10.1016/j.lithos.2004.03.017

Klemme S, Ivanic TJ, Connolly JAD, Harte B (2009) Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 112:986–991

Köhler T, Brey GP (1988) Ca in olivine as a geobarometer for lherzolites. Chem Geol 70(1–2):10

Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54(9):2375–2388

Krogh EJ (1988) The garnet-clinopyroxene Fe–Mg geothermometer—a reinterpretation of existing experimental-data. Contrib Mineral Petrol 99(1):44–48

Kurosawa M, Yurimoto H, Sueno S (1997) Patterns in the hydrogen and trace element compositions of mantle olivines. Phys Chem Miner 24(6):385–395

Li JP, O’Neill HSC, Seifert F (1995) Subsolidus phase-relations in the system MgO–SiO2–Cr–O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium. J Petrol 36(1):107–132

Luth RW, Stachel T (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib Miner Petrol 168:1083. https://doi.org/10.1007/s00410-014-1083-6

Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50(9):1765–1794. https://doi.org/10.1093/petrology/egp053

Mallmann G, O’Neill HSC, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Miner Petrol 158(4):485–504. https://doi.org/10.1007/s00410-009-0393-6

Matsyuk SS, Langer K (2004) Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contrib Miner Petrol 147(4):413–437. https://doi.org/10.1007/s00410-003-0541-3

Matveev S, Stachel T (2007) FTIR spectroscopy of OH in olivine: a new tool in kimberlite exploration. Geochim Cosmochim Acta 71(22):5528–5543

Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivine. Contrib Miner Petrol 155(6):739–765

Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites: Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139(5):541–554

O’Neill HSC, Wood BJ (1979) Experimental study of Fe–Mg partitioning between garnet and olivine and iIts calibration as a geothermometer. Contrib Miner Petrol 70(1):59–70

Papike JJ, Karner JM, Shearer CK (2005) Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am Miner 90(2–3):277–290. https://doi.org/10.2138/am.2005.1779

Phillips D, Harris JW, Viljoen KS (2004) Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77(1–4):155–179. https://doi.org/10.1016/j.lithos.2004.04.005

Pirard C, Hermann J, O’Neill HS (2013) Petrology and Geochemistry of the crust-mantle boundary in a Nascent Arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific. J Petrol 54(9):1759–1792. https://doi.org/10.1093/petrology/egt030

Rehfeldt T, Foley SF, Jacob DE, Carlson RW, Lowry D (2008) Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa. Geochim Cosmochim Acta 72(23):5722–5756. https://doi.org/10.1016/j.gca.2008.08.020

Rudnick RL, Nyblade AN (1999) The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: Field observations and high pressure experimentation; a tribute to Francis R (Joe) Boyd. Special Publication No. 6, The Geochemical Society, Washington, pp 3–12

Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356. https://doi.org/10.1038/nature10740

Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res Solid Earth 101(B3):5611–5625

Schreiber HD, Merkel RC, Schreiber VL, Balazs GB (1987) Mutual interactions of redox couples via electron exchange in silicate melts—models for geochemical melt systems. J Geophys Res-Solid 92(B9):9233–9245. https://doi.org/10.1029/Jb092ib09p09233

Shchukina EV, Shchukin VS (2018) Diamond exploration potential of the Northern East European Platform. Minerals 8(5):189. https://doi.org/10.3390/min8050189

Smith EM, Shirey SB, Richardson SH, Nestola F, Bullocks ES, Wang JH, Wang WY (2018) Blue boron-bearing diamonds from Earth’s lower mantle. Nature 560:84–87. https://doi.org/10.1038/s41586-018-0334-5

Sobolev NV, Lavrente YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from kimberlites of Yakutia and their parageneses. Contrib Miner Petrol 40(1):39–52. https://doi.org/10.1007/bf00371762

Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Kuzmin DV, Sobolev AV (2008) Olivine inclusions in Siberian diamonds: high-precision approach to minor elements. Eur J Miner 20(3):305–315. https://doi.org/10.1127/0935-1221/2008/0020-1829

Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Malygina EV, Kuzmin DV, Sobolev AV (2009) Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112:701–713. https://doi.org/10.1016/j.lithos.2009.06.038

Stachel T, Harris JW (1997a) Diamond precipitation and mantle metasomatism—evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Miner Petrol 129(2–3):143–154

Stachel T, Harris JW (1997b) Syngenetic inclusions in diamond from the Birim field (Ghana)—a deep peridotitic profile with a history of depletion and re-enrichment. Contrib Miner Petrol 127(4):336–352

Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32

Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Lett 159(1–2):1–12. https://doi.org/10.1016/S0012-821X(98)00064-8

Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84–88. https://doi.org/10.1038/nature11679

Stead CV, Tomlinson EL, Kamber BS, Babechuk MG, McKenna CA (2017) Rare earth element determination in olivine by laser ablation-quadrupole-ICP-MS: an analytical strategy and applications. Geostand Geoanal Res 41(2):197–212. https://doi.org/10.1111/ggr.12157

Steele IM, Hervig RL, Hutcheon ID, Smith JV (1981) Ion microprobe techniques and analyses of olivine and low-Ca pyroxene. Am Miner 66:526–546

Stosch HG (1981) Sc, Cr, Co and Ni partitioning between minerals from spinel peridotite xenoliths. Contrib Miner Petrol 78(2):166–174

Sutton SR, Bajt AS, Rivers ML, Smith JV (1993) X-ray microprobe determination of chromium oxidation state in olivine from lunar basalt and kimberlitic diamonds. In: 24th Lunar and Planetary Science Conference. Houston, TX, pp 1383–1384

Tollan PME, Dale CW, Hermann J, Davidson JP, Arculus RJ (2017) Generation and modification of the mantle wedge and lithosphere beneath the west bismarck island arc: melting, metasomatism and thermal history of peridotite xenoliths from Ritter Island. J Petrol 58(8):1475–1510. https://doi.org/10.1093/petrology/egx062

Tollan PME, O’Neill HS, Hermann J (2018) The role of trace elements in controlling H incorporation in San Carlos olivine. Contrib Miner Petrol 173(11):ARTN89

Witt-Eickschen G, O’Neill HS (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1–2):65–101. https://doi.org/10.1016/j.chemgeo.2005.04.005

Wu CM, Zhao GC (2007) A recalibration of the garnet-olivine geothermometer and a new geobarometer for garnet peridotites and garnet-olivine-plagioclase-bearing granulites. J Metamorph Geol 25(5):497–505