Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
Tóm tắt
Từ khóa
Tài liệu tham khảo
Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).
Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013).
Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).
Lin, F. et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nat. Energy 1, 15004 (2016).
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
Liu, C. F., Neale, Z. G. & Cao, G. Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016).
Wang, D. W. et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017).
Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).
Kalluri, S. et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 7, 1601507 (2017).
Gu, R. et al. Improved electrochemical performances of LiCoO2 at elevated voltage and temperature with an in situ formed spinel coating layer. ACS Appl. Mater. Interfaces 10, 31271–31279 (2018).
Yano, A., Shikano, M., Ueda, A., Sakaebe, H. & Ogumi, Z. LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating. J. Electrochem. Soc. 164, A6116–A6122 (2017).
Xu, Y. H. et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett. 2, 1240–1245 (2017).
MacNeil, D. D. & Dahn, J. R. The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. J. Electrochem. Soc. 149, A912–A919 (2002).
Doh, C.-H. et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test. J. Power Sources 175, 881–885 (2008).
Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).
Lu, Y.-C., Mansour, A. N., Yabuuchi, N. & Shao-Horn, Y. Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies. Chem. Mater. 21, 4408–4424 (2009).
Kalluri, S. et al. Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv. Mater. 29, 1605807 (2017).
Wu, N., Zhang, Y., Wei, Y., Liu, H. & Wu, H. Template-engaged synthesis of 1D hierarchical chainlike LiCoO2 cathode materials with enhanced high-voltage lithium storage capabilities. ACS Appl. Mater. Interfaces 8, 25361–25368 (2016).
Wang, F. et al. Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive. Energy Environ. Sci. 9, 3666–3673 (2016).
Wang, J., Ji, Y. J., Appathurai, N., Zhou, J. G. & Yang, Y. Nanoscale chemical imaging of the additive effects on the interfaces of high-voltage LiCoO2 composite electrodes. Chem. Commun. 53, 8581–8584 (2017).
Wang, L. L., Chen, B. B., Ma, J., Cui, G. L. & Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries—toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018).
Koyama, Y., Arai, H., Tanaka, I., Uchimoto, Y. & Ogumi, Z. First principles study of dopant solubility and defect chemistry in LiCoO2. J. Mater. Chem. A 2, 11235–11245 (2014).
Gopukumar, S., Jeong, Y. & Kim, K. B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion. 159, 223–232 (2003).
Tukamoto, H. & West, A. R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc. 144, 3164–3168 (1997).
Zou, M., Yoshio, M., Gopukumar, S. & Yamaki, J. Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells. Chem. Mater. 15, 4699–4702 (2003).
Kim, S. et al. Self-assembly of core-shell structures driven by low doping limit of Ti in LiCoO2: first-principles thermodynamic and experimental investigation. Phys. Chem. Chem. Phys. 19, 4104–4113 (2017).
Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).
Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).
Reimers, J. N. & Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).
Yang, S.-H., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x ≈ 0.5): an electron diffraction study. J. Electrochem. Soc. 150, A366–A373 (2003).
Yang, W. et al. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy. J. Electron Spectros. 190, 64–74 (2013).
Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation–deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B 106, 2526–2532 (2002).
Kotani, A. & Shin, S. Resonant inelastic X-ray scattering spectra for electrons in solids. Rev. Mod. Phys. 73, 203–246 (2001).
Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).
Vladimir, I. A., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter 9, 767–808 (1997).
Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B. 70, 235121 (2004).
Tanaka, S. et al. Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations. J. Mater. Sci. 49, 4032–4037 (2014).