Trace Inequalities for Fractional Integrals in Mixed Norm Grand Lebesgue Spaces
Tóm tắt
D. Adams type trace inequalities for multiple fractional integral operators in grand Lebesgue spaces with mixed norms are established. Operators under consideration contain multiple fractional integrals defined on the product of quasi-metric measure spaces, and one-sided multiple potentials. In the case when we deal with operators defined on bounded sets, the established conditions are simultaneously necessary and sufficient for appropriate trace inequalities. The derived results are new even for multiple Riesz potential operators defined on the product of Euclidean spaces. MSC 2010: Primary 26A33, 45P05; Secondary 46E30; 42B25
Tài liệu tham khảo
D.R. Adams, A trace inequality for generalized potentials. Studia Math. 48 (1973), 99–105.
G. Anatriello, A. Fiorenza, Fully measurable grand Lebesgue spaces. J. Math. Anal. Appl. 422, No 2 (2015), 783–797.
A. Benedek, R. Panzone, The spaces LP with mixed norms. Duke Math. J. 28, No 3 (1961), 301–324.
C. Capone, A. Fiorenza, On small Lebesgue spaces. J. Funct. Spaces Appl. 3 (2005), 73–89.
D.E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and Compact Integral Operators. Kluwer Academic Publishers, Dordrecht (2002).
G. Di Fratta, A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces. Nonlin. Anal.: Theory, Methods and Appl. 70, No 7 (2009), 2582–2592.
A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51, No 2 (2000), 131–148.
A. Fiorenza, B. Gupta, P. Jain, The maximal theorem in weighted grand Lebesgue spaces. Studia Math. 188, No 2 (2008), 123–133.
A. Fiorenza, G.E. Karadzhov, Grand and small Lebesgue spaces and their analogs. J. for Anal. and its Appl., 23, No 4 (2004), 657–681.
A. Fiorenza, J.M. Rakotoson, Petits espaces de Lebesgue et leurs applications. C.R.A.S.T. 333 (2001), 1–4.
M. Gabidzashvili, Weighted estimates for potentials in spaces of homogeneous type. Trudy Tbilis. Mat. Inst. 95 (1989), 3–8 (in Russian).
L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math. 92 (1997), 249–258.
T. Iwaniec, C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 119 (1992), 129–143.
V. Kokilashvili, Lizorkin-Triebel spaces. Singular integrals, multipliers, imbedding theorems. Trudy Mat. Inst. Steklova 161 (1983), 125–149 (in Russian); Engl. Transl.: Proc. Steklov Inst. Math. 161 (1984), 135–162.
V. Kokilashvili, M. Mastyło, A. Meskhi, Multilinear integral operators in weighted grand Lebesgue spaces. Fract. Calc. Appl. Anal. 19, No 3 (2016), 691–724; DOI: 10.1515/fca-2016-003; https://www.degruyter.com/view/journals/fca/19/3/fca.19.issue-3.xml.
V. Kokilashvili, A. Meskhi, Weighted Sobolev inequality in grand mixed norm Lebesgue spaces. Positivity Publ. online, DOI: 10.1007/s11117-020-00764-8.
V. Kokilashvili, A. Meskhi, On a trace inequality for one-sided potentials with multiple kernels. Fract. Calc. Appl. Anal. 6, No 4 (2003), 461–472.
V. Kokilashvili, A. Meskhi, Trace inequalities for integral operators with fractional order in grand Lebesgue spaces. Studia Math. 210 (2012), 159–176.
V. Kokilashvili, A. Meskhi, S. Samko, H. Rafeiro, Integral Operators in Non-standard Function Spaces. Vol. II: Variable Exponent Hölder, Morrey-Campanato and Grand Spaces. Birkhäuser (2016).
A. Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operators. Georgian Math. J. 5, No 6 (1998), 265–274.
H. Rafeiro, S. Samko, Fractional integrals and derivatives: mapping properties. Fract. Calc. Appl. Anal. 19, No 3 (2016), 580-–607; DOI: 10.1515/fca-2016-0032; https://www.degruyter.com/view/journals/fca/19/3/fca.19.issue-3.xml
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Sci. Publ., London-New York (1993).
S. Samko, S. Umarkhadzhiev, Riesz fractional integrals in grand Lebesgue spaces on n. Fract. Calc. Appl. Anal. 19, No 3 (2016), 608–624; DOI: 10.1515/fca-2016-0033; https://www.degruyter.com/view/journals/fca/19/3/fca.19.issue-3.xml.
J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces. Lecture Notes in Math. Vol. 1381, Springer Verlag, Berlin (1989).