Trace Gases over Land and Ocean Surfaces of China: Hotspots, Trends, and Source Contributions

Md. Arfan Ali1,2, Yu Wang3, Muhammad Bilal4, Mazen E. Assiri2, Abu Reza Md Towfiqul Islam5,6, Guilherme Malafaia7,8,9, Zhongwei Huang1, Alaa Mhawish10, M. Nazrul Islam2, Zhongfeng Qiu3, Rayees Ahmed11, Mansour Almazroui12,13
1Collaborative Innovation Center for West Ecological Safety (CIWES), Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
2The Climate Change Center at National Center for Meteorology, Jeddah, Saudi Arabia
3School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, China
4Center for Sustainability and the Global Environment (SAGE), Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, USA
5Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh
6Department of Development Studies, Daffodil International University, Dhaka, Bangladesh
7Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, Brazil
8Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, Brazil
9Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil
10Sand and Dust Storm Warning Regional Center, National Center for Meteorology, Jeddah, Saudi Arabia
11Department of Geography and Disaster Management, University of Kashmir, Srinagar, India
12Center of Excellence for Climate Change Research/ Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
13Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK

Tóm tắt

Trace gases in the atmosphere (NO2: nitrogen dioxide; SO2: sulfur dioxide) have a major impact on both local and global air quality, human health, climate and ecological conditions. Therefore, the present study investigated 16 years (2005– 2020) of Ozone Monitoring Instrument (OMI) based NO2 and SO2 in Dobson unit (DU) spatiotemporal distributions and variability, SO2/NO2 ratio, trends, and potential source contribution function (PSCF) across ocean and land areas of Jiangsu Province, China. Results demonstrated higher NO2 and SO2 concentrations (DU) over land (NO2: 0.58 and SO2: 0.56) than in the ocean (NO2: 0.30 and SO2: 0.38) due to more concentrated anthropogenic activities on land surfaces. There were significant seasonal variations in NO2 and SO2, with winter being the highest and summer being the lowest. The SO2/NO2 ratio shows land and ocean pollution is caused by NO2 and SO2 emissions from ships and industrial processes. Furthermore, OMI-based trace gases and anthropogenic emissions showed a good correlation (NO2 vs NOx = 0.626 and SO2 vs SO2 emission = 0.871) across land surfaces than the ocean (NO2 vs NOx = 0.366). NO2 and SO2 levels over land surfaces decreased significantly (at a 95% confidence level) compared to the ocean on annual and seasonal scales, which is attributed to a decrease in NOx and SO2 emissions. Furthermore, PSCF analysis shows that local sources have a greater impact on air quality than long-distance sources over land and ocean. It is concluded from this study that Chinese air pollution control policies achieved a satisfactory improvement in Jiangsu's air quality by reducing NO2 and SO2. It is therefore recommended to continue or extend these policies in the future to improve China’s air quality, which will benefits its citizens.

Tài liệu tham khảo

Abdul Halim ND, Latif MT, Ahamad F, Dominick D, Chung JX, Juneng L, Khan MF (2018) The long-term assessment of air quality on an island in Malaysia. Heliyon 4:e01054. https://doi.org/10.1016/j.heliyon.2018.e01054 Ali MA, Huang Z, Bilal M, Assiri ME, Mhawish A, Nichol JE, de Leeuw G, Almazroui M, Wang Y, Alsubhi Y (2023) Long-term PM2.5 pollution over China: identification of PM2.5 pollution hotspots and source contributions. Sci Total Environ 893:164871. https://doi.org/10.1016/j.scitotenv.2023.164871 Andersson C, Bergström R, Johansson C (2009) Population exposure and mortality due to regional background PM in Europe—long-term simulations of source region and shipping contributions. Atmos Environ 43:3614–3620. https://doi.org/10.1016/j.atmosenv.2009.03.040 Aneja VP, Agarwal A, Roelle PA, Phillips SB, Tong Q, Watkins N, Yablonsky R (2001) Measurements and analysis of criteria pollutants in New Delhi. India Environ Int 27:35–42. https://doi.org/10.1016/S0160-4120(01)00051-4 Berglen TF (2004) A global model of the coupled sulfur/oxidant chemistry in the troposphere: the sulfur cycle. J Geophys Res 109:D19310. https://doi.org/10.1029/2003JD003948 Bilal M, Mhawish A, Nichol JE, Qiu Z, Nazeer M, Ali MA, de Leeuw G, Levy RC, Wang Y, Chen Y, Wang L, Shi Y, Bleiweiss MP, Mazhar U, Atique L, Ke S (2021) Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases. Remote Sens Environ 264:112617. https://doi.org/10.1016/j.rse.2021.112617 Boersma KF, Eskes HJ, Richter A, De Smedt I, Lorente A, Beirle S, van Geffen JHGM, Zara M, Peters E, Van Roozendael M, Wagner T, Maasakkers JD, van der ARJ, Nightingale J, De RudderA, Irie H, Pinardi G, Lambert JC, Compernolle SC, (2018) Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the Quality Assurance for Essential Climate Variables (QA4ECV) project. Atmos Meas Tech 11:6651–6678. https://doi.org/10.5194/amt-11-6651-2018 Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede APH (1999) SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 56:127–150. https://doi.org/10.1175/1520-0469(1999)056%3c0127:SMOAMM%3e2.0.CO;2 Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K-U, Eisinger M, Perner D (1999) The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. J Atmos Sci 56:151–175. https://doi.org/10.1175/1520-0469(1999)056%3c0151:TGOMEG%3e2.0.CO;2 Callies J, Corpaccioli E, Eisinger M, Lefebvre A, Munro R, Perez-Albinana A, Ricciarelli B, Calamai L, Gironi G, Veratti R, Otter G, Eschen M, van Riel L (2004) GOME-2 ozone instrument onboard the European METOP satellites. In: Vonder Haar TH, Huang HLA (eds) Weather and environmental satellites. https://doi.org/10.1117/12.557860 Carey IM, Atkinson RW, Kent AJ, van Staa T, Cook DG, Anderson HR (2013) Mortality associations with long-term exposure to outdoor air pollution in a national english cohort. Am J Respir Crit Care Med 187:1226–1233. https://doi.org/10.1164/rccm.201210-1758OC Celarier EA, Brinksma EJ, Gleason JF, Veefkind JP, Cede A, Herman JR, Ionov D, Goutail F, Pommereau JP, Lambert JC, van Roozendael M, Pinardi G, Wittrock F, Schönhardt A, Richter A, Ibrahim OW, Wagner T, Bojkov B, Mount G, Spinei E, Chen CM, Pongetti TJ, Sander SP, Bucsela EJ, Wenig MO, Swart DPJ, Volten H, Kroon M, Levelt PF (2008) Validation of ozone monitoring instrument nitrogen dioxide columns. J Geophys Res 113:D15S15. https://doi.org/10.1029/2007JD008908 Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42:1–42. https://doi.org/10.1016/j.atmosenv.2007.09.003 Chen T, Deng S, Gao Y, Qu L, Li M, Chen D (2017) Characterization of air pollution in urban areas of Yangtze River Delta. China Chinese Geogr Sci 27:836–846. https://doi.org/10.1007/s11769-017-0900-z Cheng Y, Wang S, Zhu J, Guo Y, Zhang R, Liu Y, Zhang Y, Yu Q, Ma W, Zhou B (2019a) Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and implication to compliance of fuel sulfur content. Atmos Chem Phys 19:13611–13626. https://doi.org/10.5194/acp-2019-369 Cheng Y, Wang S, Zhu J, Guo Y, Zhang R, Liu Y, Zhang Y, Yu Q, Ma W, Zhou B (2019b) Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance. Atmos Chem Phys. https://doi.org/10.5194/acp-19-13611-2019 Corbett JJ, Fischbeck PS, Pandis SN (1999) Global nitrogen and sulfur inventories for oceangoing ships. J Geophys Res Atmos 104:3457–3470. https://doi.org/10.1029/1998JD100040 Cui Y, Lin J, Song C, Liu M, Yan Y, Xu Y, Huang B (2016) Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013. Atmos Chem Phys 16:6207–6221. https://doi.org/10.5194/acp-16-6207-2016 Dahiya S, Myllyvirta L (2019) Global SO 2 emission hotspot database RANKING THE WORLD’S WORST SOURCES OF SO 2 POLLUTION Content de Leeuw G, van der AR, Bai J, Xue Y, Varotsos C, Li Z, Fan C, Chen X, Christodoulakis I, Ding J, Hou X, Kouremadas G, Li D, Wang J, Zara M, Zhang K, Zhang Y (2021) Air quality over China. Remote Sens 13:3542. https://doi.org/10.3390/rs13173542 de Gouw JA, Parrish DD, Frost GJ, Trainer M (2014) Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Futur 2:75–82. https://doi.org/10.1002/2013EF000196 Ding J, van der ARJ, Mijling B, Jalkanen JP, Johansson L, Levelt PF (2018) Maritime NOx emissions over Chinese seas derived from satellite observations. Geophys Res Lett 45:2031–2037. https://doi.org/10.1002/2017GL076788 Ding J, van der ARJ, Mijling B, Levelt PF (2017) Space-based NOx emission estimates over remote regions improved in DECSO. Atmos Meas Tech 10:925–938. https://doi.org/10.5194/amt-10-925-2017 Ding J, Miyazaki K, van der ARJ, Mijling B, Kurokawa J, Cho S, Janssens-Maenhout G, Zhang Q, Liu F, Levelt PF (2017) Intercomparison of NOx emission inventories over East Asia. Atmos Chem Phys 17:10125–10141. https://doi.org/10.5194/acp-17-10125-2017 Dong G-H, Zhang P, Sun B, Zhang L, Chen X, Ma N, Yu F, Guo H, Huang H, Lee YL, Tang N, Chen J (2012) Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study. Respiration 84:360–368. https://doi.org/10.1159/000332930 Eisinger M, Burrows JP (1998) Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophys Res Lett 25:4177–4180. https://doi.org/10.1029/1998GL900128 Endresen Ø (2003) Emission from international sea transportation and environmental impact. J Geophys Res 108:4560. https://doi.org/10.1029/2002JD002898 Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Transport impacts on atmosphere and climate: Shipping. Atmos Environ 44:4735–4771. https://doi.org/10.1016/j.atmosenv.2009.04.059 Fan Q, Zhang Y, Ma W, Ma H, Feng J, Yu Q, Yang X, Ng SKW, Fu Q, Chen L (2016) Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environmental influence. Environ Sci Technol 50:1322–1329. https://doi.org/10.1021/acs.est.5b03965 Feng Z, Huang Y, Feng Y, Ogura N, Zhang F (2001) Chemical composition of precipitation in Beijing area, Northern China. Water Air Soil Pollut 125:345–356. https://doi.org/10.1023/A:1005287102786 Fleming ZL, Monks PS, Manning AJ (2012) Review: untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39. https://doi.org/10.1016/j.atmosres.2011.09.009 Healy RM, O’Connor IP, Hellebust S, Allanic A, Sodeau JR, Wenger JC (2009) Characterisation of single particles from in-port ship emissions. Atmos Environ 43:6408–6414. https://doi.org/10.1016/j.atmosenv.2009.07.039 Hilboll A, Richter A, Burrows JP (2013) Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos Chem Phys 13:4145–4169. https://doi.org/10.5194/acp-13-4145-2013 Hutchinson TC, Whitby LM (1977) The effects of acid rainfall and heavy metal particulates on a boreal Forest ecosystem near the sudbury smelting region of Canada. Water Air Soil Pollut. https://doi.org/10.1007/BF00285542 Jain RK, Cui Z, Domen JK (2016) Environmental impacts of mining. In: Environmental impact of mining and mineral processing. Elsevier, New York, pp 53–157. https://doi.org/10.1016/B978-0-12-804040-9.00004-8 Jeon W, Choi Y, Mun J, Lee S-H, Choi H-J, Yoo J-W, Lee H-J, Lee HW (2018) Behavior of sulfate on the sea surface during its transport from Eastern China to South Korea. Atmos Environ 186:102–112. https://doi.org/10.1016/j.atmosenv.2018.05.017 Jeon W, Park J, Choi Y, Mun J, Kim D, Kim C-H, Lee H-J, Bak J, Jo H-Y (2021) The mechanism of the formation of high sulfate concentrations over the Yellow Sea during the KORUS-AQ period: the effect of transport/atmospheric chemistry and ocean emissions. Atmos Res 261:105756. https://doi.org/10.1016/j.atmosres.2021.105756 Jion MMMF, Jannat JN, Mia MY et al (2023) A critical review and prospect of NO2 and SO2 pollution over Asia: hotspots, trends, and sources. Sci Total Environ 876:162851. https://doi.org/10.1016/j.scitotenv.2023.162851 Johansson L, Jalkanen J-P, Kukkonen J (2017) Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos Environ 167:403–415. https://doi.org/10.1016/j.atmosenv.2017.08.042 Kendall MG (1975) Rank correlation methods (4th edn.) Charles Griffin, San Francisco, London Krotkov NA, McLinden CA, Li C, Lamsal LN, Celarier EA, Marchenko SV, Swartz WH, Bucsela EJ, Joiner J, Duncan BN, Boersma KF, Veefkind JP, Levelt PF, Fioletov VE, Dickerson RR, He H, Lu Z, Streets DG (2016) Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos Chem Phys 16:4605–4629. https://doi.org/10.5194/acp-16-4605-2016 Lamsal LN, Martin RV, Parrish DD, Krotkov NA (2013) Scaling relationship for NO2 pollution and urban population size: a satellite perspective. Environ Sci Technol 47:7855–7861. https://doi.org/10.1021/es400744g Lee DS, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global no, emissions and their uncertainties. Atmos Environ 31:1735–1749. https://doi.org/10.1016/S1352-2310(96)00327-5 Lelieveld J, Dentener FJ (2000) What controls tropospheric Ozone? J Geophys Res Atmos 105:3531–3551. https://doi.org/10.1029/1999JD901011 Lelieveld J, Peters W, Dentener FJ, Krol MC (2002) Stability of tropospheric hydroxyl chemistry. J Geophys Res Atmos. https://doi.org/10.1029/2002JD002272 Levelt PF, Hilsenrath E, Leppelmeier GW, van den Oord GHJ, Bhartia PK, Tamminen J, de Haan JF, Veefkind JP (2006a) Science objectives of the ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44:1199–1208. https://doi.org/10.1109/TGRS.2006.872336 Levelt PF, van den Oord GHJ, Dobber MR, Malkki A, Visser H, de Vries J, Stammes P, Lundell JOV, Saari H (2006b) The ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44:1093–1101. https://doi.org/10.1109/TGRS.2006.872333 Levelt PF, Joiner J, Tamminen J, Veefkind JP, Bhartia PK, Stein Zweers DC, Duncan BN, Streets DG, Eskes H, van der AR, McLinden C, Fioletov V, Carn S, de Laat J, DeLand M, Marchenko S, McPeters R, Ziemke J, Fu D, Liu X, Pickering K, Apituley A, González Abad G, Arola A, Boersma F, Chan Miller C, Chance K, de Graaf M, Hakkarainen J, Hassinen S, Ialongo I, Kleipool Q, Krotkov N, Li C, Lamsal L, Newman P, Nowlan C, Suleiman R, Tilstra LG, Torres O, Wang H, Wargan K (2018) The Ozone Monitoring Instrument: overview of 14 years in space. Atmos Chem Phys 18:5699–5745. https://doi.org/10.5194/acp-18-5699-2018 Li C, Zhang Q, Krotkov NA, Streets DG, He K, Tsay S-C, Gleason JF (2010) Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument. Geophys Res Lett. https://doi.org/10.1029/2010GL042594 Li C, McLinden C, Fioletov V, Krotkov N, Carn S, Joiner J, Streets D, He H, Ren X, Li Z, Dickerson RR (2017a) India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Sci Rep 7:14304. https://doi.org/10.1038/s41598-017-14639-8 Li M, Zhang Q, Kurokawa J, Woo J-H, He K, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B (2017b) MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys 17:935–963. https://doi.org/10.5194/acp-17-935-2017 Lin J-T, McElroy MB (2011) Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese economic downturn. Atmos Chem Phys 11:8171–8188. https://doi.org/10.5194/acp-11-8171-2011 Liu F, Zhang Q, van der ARJ, Zheng B, Tong D, Yan L, Zheng Y, He K (2016) Recent reduction in NOx emissions over China: synthesis of satellite observations and emission inventories. Environ Res Lett 11:114002. https://doi.org/10.1088/1748-9326/11/11/114002 Liu F, Beirle S, Zhang Q, van der ARJ, Zheng B, Tong D, He K (2017) NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015. Atmos Chem Phys 17:9261–9275. https://doi.org/10.5194/acp-17-9261-2017 Lu Z, Streets DG, de Foy B, Krotkov NA (2013) Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environ Sci Technol 47:13993–14000. https://doi.org/10.1021/es4039648 Lv Z, Liu H, Ying Q, Fu M, Meng Z, Wang Y, Wei W, Gong H, He K (2018) Impacts of shipping emissions on PM2.5 air pollution in China. Atmos Chem Phys 18:15811–15824. https://doi.org/10.5194/acp-18-15811-2018 Ma Z, Liu R, Liu Y, Bi J (2019) Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: a satellite-based perspective. Atmos Chem Phys 19:6861–6877. https://doi.org/10.5194/acp-19-6861-2019 Mann HB (1945) Nonparametric TESTS AGAINST TREND. Econometrica 13:245. https://doi.org/10.2307/1907187 Matthias V, Bewersdorff I, Aulinger A, Quante M (2010) The contribution of ship emissions to air pollution in the North Sea regions. Environ Pollut 158:2241–2250. https://doi.org/10.1016/j.envpol.2010.02.013 Meng Z-Y, Xu X-B, Wang T, Zhang X-Y, Yu X-L, Wang S-F, Lin W-L, Chen Y-Z, Jiang Y-A, An X-Q (2010) Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007–2008. Atmos Environ 44:2625–2631. https://doi.org/10.1016/j.atmosenv.2010.04.008 Mhawish A, Banerjee T, Sorek-Hamer M, Bilal M, Lyapustin AI, Chatfield R, Broday DM (2020) Estimation of high-resolution PM 2.5 over the indo-gangetic plain by fusion of satellite data, meteorology, and land use variables. Environ Sci Technol 54:7891–7900. https://doi.org/10.1021/acs.est.0c01769 Mijling B, van der ARJ (2012) Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale. J Geophys Res Atmos. https://doi.org/10.1029/2012JD017817 Miller BG (2005) The effect of coal usage on human health and the environment. In: Coal energy systems. Elsevier, New York, pp 77–122. https://doi.org/10.1016/B978-012497451-7/50003-6 Moldanová J, Hassellöv IM, Matthias V et al (2022) Framework for the environmental impact assessment of operational shipping. Ambio 51:754–769. https://doi.org/10.1007/s13280-021-01597-9 MOT (2015) MOT: implementation of the ship emission control area in Pearl River Delta, the Yangtze River Delta and the Bohai Rim (Beijing-Tianjin-Hebei area). http://www.chim-pn.com/Doc/implementation_plan_eng.pdf Munro R, Lang R, Klaes D, Poli G, Retscher C, Lindstrot R, Huckle R, Lacan A, Grzegorski M, Holdak A, Kokhanovsky A, Livschitz J, Eisinger M (2016) The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing—an overview. Atmos Meas Tech 9:1279–1301. https://doi.org/10.5194/amt-9-1279-2016 Nirel R, Dayan U (2001) On the ratio of sulfur dioxide to nitrogen oxides as an indicator of air pollution sources. J Appl Meteorol 40:1209–1222. https://doi.org/10.1175/1520-0450(2001)040%3c1209:OTROSD%3e2.0.CO;2 Penn E, Holloway T (2020) Evaluating current satellite capability to observe diurnal change in nitrogen oxides in preparation for geostationary satellite missions. Environ Res Lett 15:034038. https://doi.org/10.1088/1748-9326/ab6b36 Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742. https://doi.org/10.1080/10473289.2006.10464485 Qi H, Lin W, Xu X, Yu X, Ma Q (2012) Significant downward trend of SO2 observed from 2005 to 2010 at a background station in the Yangtze Delta region, China. Sci China Chem 55:1451–1458. https://doi.org/10.1007/s11426-012-4524-y Schreier SF, Peters E, Richter A, Lampel J, Wittrock F, Burrows JP (2015) Ship-based MAX-DOAS measurements of tropospheric NO2 and SO2 in the South China and Sulu Sea. Atmos Environ 102:331–343. https://doi.org/10.1016/j.atmosenv.2014.12.015 Schwarzkopf DA, Petrik R, Matthias V, Quante M, Yu G, Zhang Y (2022) Comparison of the impact of ship emissions in northern Europe and eastern China. Atmosphere 13:894. https://doi.org/10.3390/atmos13060894 Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. In: Public administration review. Wiley, Hoboken Sen PK (1968) Journal of the American statistical estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389 Song C, Wu L, Xie Y, He J, Chen X, Wang T, Lin Y, Jin T, Wang A, Liu Y, Dai Q, Liu B, Wang Y, Mao H (2017) Air pollution in China: status and spatiotemporal variations. Environ Pollut 227:334–347. https://doi.org/10.1016/j.envpol.2017.04.075 Song R, Yang L, Liu M, Li C, Yang Y (2019) Spatiotemporal distribution of air pollution characteristics in Jiangsu Province. China Adv Meteorol 2019:1–14. https://doi.org/10.1155/2019/5907673 Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 Takashima H, Irie H, Kanaya Y, Syamsudin F (2012) NO2 observations over the western Pacific and Indian Ocean by MAX-DOAS on Kaiyo a Japanese research vessel. Atmos Meas Tech 5:2351–2360. https://doi.org/10.5194/amt-5-2351-2012 Tan W, Liu C, Wang S, Xing C, Su W, Zhang C, Xia C, Liu H, Cai Z, Liu J (2018) Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data. Atmos Chem Phys 18:15387–15402. https://doi.org/10.5194/acp-18-15387-2018 Tao Y, Huang W, Huang X, Zhong L, Lu SE, Li Y, Dai L, Zhang Y, Zhu T (2012) Estimated acute effects of ambient Ozone and nitrogen dioxide on mortality in the Pearl River Delta of southern China. Environ Health Perspect. https://doi.org/10.1289/ehp.1103715 Theil H (1992) A rank-invariant method of linear and polynomial regression analysis BT—Henri Theil’s contributions to economics and econometrics: econometric theory and methodology. Springer, Netherlands, pp 345–381 Theys N, De Smedt I, van Gent J, Danckaert T, Wang T, Hendrick F, Stavrakou T, Bauduin S, Clarisse L, Li C, Krotkov N, Yu H, Brenot H, Van Roozendael M (2015) Sulphur dioxide vertical column DOAS retrievals from the Ozone Monitoring Instrument: global observations and comparison to groundbased and satellite data. J Geophys Res Atmos 120:2470–2491. https://doi.org/10.1002/2014JD022657 van der ARJ, Mijling B, Ding J, Koukouli ME, Liu F, Li Q, Mao H, Theys N (2017) Cleaning up the air: Effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos Chem Phys 17:1775–1789. https://doi.org/10.5194/acp-17-1775-2017 Veefkind JP, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes HJ, de Haan JF, Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H, Levelt PF (2012) TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens Environ 120:70–83. https://doi.org/10.1016/j.rse.2011.09.027 Wang S, Xing J, Chatani S, Hao J, Klimont Z, Cofala J, Amann M (2011) Verification of anthropogenic emissions of China by satellite and ground observations. Atmos Environ 45:6347–6358. https://doi.org/10.1016/j.atmosenv.2011.08.054 Wang Y, Beirle S, Lampel J, Koukouli M, De Smedt I, Theys N, Li A, Wu D, Xie P, Liu C, Van Roozendael M, Stavrakou T, Müller J-F, Wagner T (2017) Validation of OMI, GOME-2A and GOME-2B tropospheric NO2 SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of prio. Atmos Chem Phys 17:5007–5033. https://doi.org/10.5194/acp-17-5007-2017 Wang Y, Ali MA, Bilal M, Qiu Z, Ke S, Almazroui M, Islam MM, Zhang Y (2021a) Identification of aerosol pollution hotspots in Jiangsu Province of China. Remote Sens 13:2842. https://doi.org/10.3390/rs13142842 Wang Y, Ali MA, Bilal M, Qiu Z, Mhawish A, Almazroui M, Shahid S, Islam MN, Zhang Y, Haque MN (2021b) Identification of NO2 and SO2 pollution hotspots and sources in Jiangsu Province of China. Remote Sens 13:3742. https://doi.org/10.3390/rs13183742 Wei J, Li Z, Wang J, Li C, Gupta P, Cribb M (2023) Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmos Chem Phys 23:1511–1532. https://doi.org/10.5194/acp-23-1511-2023,2023 Xue R, Wang S, Li D, Zou Z, Chan KL, Valks P, Saiz-Lopez A, Zhou B (2020) Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J Clean Prod 258:120563. https://doi.org/10.1016/j.jclepro.2020.120563 Zhai J, Yu G, Zhang J, Shi S, Yuan Y et al (2023) Impact of ship emissions on air quality in the greater bay area in china under the latest global marine fuel regulation. Environ Sci Technol 57(33):12341–12350. https://doi.org/10.1021/acs.est.3c03950 Zhang L, Jacob DJ, Boersma KF, Jaffe DA, Olson JR, Bowman KW, Worden JR, Thompson AM, Avery MA, Cohen RC, Dibb JE, Flock FM, Fuelberg HE, Huey LG, McMillan WW, Singh HB, Weinheimer AJ (2008) Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmos Chem Phys 8:6117–6136. https://doi.org/10.5194/acp-8-6117-2008 Zhang L, Lee CS, Zhang R, Chen L (2017a) Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province. China Atmos Environ 154:151–166. https://doi.org/10.1016/j.atmosenv.2016.11.067 Zhang Y, Yang X, Brown R, Yang L, Morawska L, Ristovski Z, Fu Q, Huang C (2017b) Shipping emissions and their impacts on air quality in China. Sci Total Environ 581–582:186–198. https://doi.org/10.1016/j.scitotenv.2016.12.098 Zheng F, Yu T, Cheng T, Gu X, Guo H (2014) Intercomparison of tropospheric nitrogen dioxide retrieved from Ozone Monitoring Instrument over China. Atmos Pollut Res 5:686–695. https://doi.org/10.5094/APR.2014.078 Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L, Zhang Y, Zhao H, Zheng Y, He K, Zhang Q (2018a) Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 18:14095–14111. https://doi.org/10.5194/acp-18-14095-2018 Zheng C, Zhao C, Li Y, Wu X, Zhang K, Gao J, Qiao Q, Ren Y, Zhang X, Chai F (2018b) Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmos Environ 188:50–59. https://doi.org/10.1016/j.atmosenv.2018.06.029 Zhou F, Gu J, Chen W, Ni X (2019) Measurement of SO2 and NO2 in Ship Plumes Using Rotary Unmanned Aerial System. Atmosphere (Basel) 10:657. https://doi.org/10.3390/atmos10110657