Trace CO <sub>2</sub> capture by an ultramicroporous physisorbent with low water affinity

Science advances - Tập 5 Số 11 - 2019
Soumya Mukherjee1, Nivedita Sikdar1, Daniel O’Nolan1, Douglas Franz2, Victoria Gascón1, Amrit Kumar1, Naveen Kumar1, Hayley S. Scott3, David G. Madden1, Paul E. Kruger3, Brian Space2, Michael J. Zaworotko1
1Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
2Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL 33620-5250, USA.
3MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

Tóm tắt

The first sorbent with high CO 2 selectivity and poor water affinity addresses need for trace CO 2 remediation in confined spaces.

Từ khóa


Tài liệu tham khảo

The NOAA Annual Greenhouse Gas Index (AGGI) (U.S. Department of Commerce 2017); https://www.esrl.noaa.gov/gmd/aggi/aggi.html.

International Energy Agency Global Energy & CO 2 Status Report (International Energy Agency 2017).

10.1038/nclimate3231

National Research Council The Airliner Cabin Environment and the Health of Passengers and Crew (The National Academies Press 2002) p. 344.

A. Stankovic D. Alexander C. M. Oman J. Schneiderman A Review of Cognitive and Behavioral Effects of Increased Carbon Dioxide Exposure in Humans 2016–2017 (NASA/TM-2016-219277 NASA 2016).

10.1038/s41893-019-0323-1

10.1039/C3EE42350F

10.1038/nclimate2870

10.1002/anie.201000431

S.-C. Hu, A. Shiue, S.-M. Chang, Y.-T. Chang, C.-H. Tseng, C.-C. Mao, A. Hsieh, A. Chan, Removal of carbon dioxide in the indoor environment with sorption-type air filters. Int. J. Low-Carbon Technol. 12, 330–334 (2017).

10.1016/j.pecs.2009.10.001

10.1021/acs.chemrev.6b00173

10.1039/C7EE02110K

10.1021/ie3003446

10.1039/b807086p

10.1002/anie.200390130

M. Schroeder Functional Metal–Organic Frameworks: Gas Storage Separation and Catalysis (Springer-Verlag 2010).

D. G. Madden, H. S. Scott, A. Kumar, K.-J. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J. J. Perry, M. J. Zaworotko, Flue-gas and direct-air capture of CO2 by porous metal-organic materials. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160025 (2017).

10.1002/anie.201506952

10.1039/C5CC05866J

10.1038/nature11893

10.1126/science.aaf2458

10.1021/ja100900c

10.1039/c3ce41238e

10.1073/pnas.0804900105

10.1073/pnas.0602439103

10.1021/je0498917

10.1021/jacs.6b05345

10.1039/C7CC02289A

10.1021/cr5002589

10.1021/ie3030533

10.1002/aic.690110125

K. C. Waterman Understanding and predicting pharmaceutical product shelf-life in Handbook of Stability Testing in Pharmaceutical Development (Springer 2009) pp. 115–135.

10.1002/anie.201503835

10.1021/jacs.7b01682

10.1021/la304204k

10.1021/acssuschemeng.8b05590

10.1126/science.1194237

10.1104/pp.110.164814

10.1021/ja411579b

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Guideline ICH Q1A (R2): Stability Testing of New Drug Substances and Drug Products (European Medicines Agency 2003).

10.1039/a908177a

10.1002/wcms.1159

10.1021/ja00051a040

10.1021/ct400549q