Toxicological Insight from AP-1 Silencing Study on Proliferation, Migration, and Dedifferentiation of Rat Vascular Smooth Muscle Cell
Tóm tắt
There has an effective way to prevent intimal hyperplasia on vascular smooth muscle cell (VSMC) proliferation in grafted veins. The activator protein-1 (AP-1) transcription factor plays an important role in cardiovascular generation and angioplasty. Once activated, AP-1 binds its specific DNA sequence to promote the proliferation of VSMC, differentiation, and migration. The objectives of this study were to determine toxicological effects of AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. To suppress the expression of AP-1 gene, AP-1 siRNA was used to interfere post-transcription in rat primary VSMCs. To observe the expression of SM α-actin and downstream genes of AP-1, the activity of cell matrix metal proteinases and the migration ability of VSMC was examined by a modified Boyden chamber assay. Effects of AP-1 siRNA on proliferation and differentiation in rat VSMCs were evaluated by cell cycle analysis, DNA synthesis, MTT-test, and immunofluorescence. The results showed that the level of SM α-actin protein expression was increased. AP-1 siRNA also significantly decreased the MTT extinction value, DNA synthesis, PCNA expression, and the cell migration velocity when compared to the control group. AP-1 siRNA also clearly arrested cell cycle of VSM at the G0/G1 phase. Zymographic and Western blotting analyses showed that AP-1 siRNA suppressed serum-induced MMP-2 expression. These data suggest that the AP-1 siRNA was able to effectively inhibit the proliferation, migration, and dedifferentiation of smooth muscle cells. Thus, AP-1 siRNA provides a novel method to prevent intimal hyperplasia in blood vessel angioplasty.
Tài liệu tham khảo
Abate, C., Luk, D., Gagne, E., Roeder, R. G., & Curran, T. (1990). Fos and jun cooperate in transcriptional regulation via heterologous activation domains. Molecular and Cellular Biology, 10, 5532–5535.
Cho, A., & Reidy, M. A. (2002). Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circulation Research, 91, 845–851.
McBride, W., Lange, R. A., & Hillis, L. D. (1988). Restenosis after successful coronary angioplasty. Pathophysiology and prevention. New England Journal of Medicine, 318, 1734–1737.
Schwartz, S. M., deBlois, D., & O’Brien, E. R. (1995). The intima. Soil for atherosclerosis and restenosis. Circulation Research, 77, 445–465.
Ueda, M., Becker, A. E., Fujimoto, T., & Tsukada, T. (1991). The early phenomena of restenosis following percutaneous transluminal coronary angioplasty. European Heart Journal, 12, 937–945.
Ross, R. (1986). The pathogenesis of atherosclerosis—an update. New England Journal of Medicine, 314, 488–500.
Chamley-Campbell, J., Campbell, G. R., & Ross, R. (1979). The smooth muscle cell in culture. Physiological Reviews, 59, 1–61.
Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362, 801–809.
Schwartz, R. S., Holmes, D. R., Jr., & Topol, E. J. (1992). The restenosis paradigm revisited: An alternative proposal for cellular mechanisms. Journal of the American College of Cardiology, 20, 1284–1293.
Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.
Liu, M. W., Roubin, G. S., & King, S. B., I. I. I. (1989). Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation, 79, 1374–1387.
Pauletto, P., Sartore, S., & Pessina, A. C. (1994). Smooth-muscle-cell proliferation and differentiation in neointima formation and vascular restenosis. Clinical Science (London), 87, 467–479.
Hu, Y., Zou, Y., Dietrich, H., Wick, G., & Xu, Q. (1999). Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin. Circulation, 100, 861–868.
Kim, S., Izumi, Y., Yano, M., Hamaguchi, A., Miura, K., Yamanaka, S., et al. (1998). Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation, 97, 1731–1737.
Turpaev, K. T. (2006). Role of transcription factor AP-1 in integration of cellular signalling systems. Mol Biol (Mosk), 40, 945–961.
Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in tumourigenesis. European Journal of Cancer, 41, 2449–2461.
Raivich, G., & Behrens, A. (2006). Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progress in Neurobiology, 78, 347–363.
Butscher, W. G., Powers, C., Olive, M., Vinson, C., & Gardner, K. (1998). Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J Biol Chem, 273, 552–560.
Hussain, S., Kilbey, A., & Gillespie, D. A. (1998). v-Jun represses c-jun proto-oncogene expression in vivo through a 12-O-tetradecanoylphorbol-13-acetate-responsive element in the proximal gene promoter. Cell Growth and Differentiation, 9, 677–686.
Smith, S. E., Papavassiliou, A. G., & Bohmann, D. (1993). Different TRE-related elements are distinguished by sets of DNA-binding proteins with overlapping sequence specificity. Nucleic Acids Research, 21, 1581–1585.
Fung, H., Liu, P., & Demple, B. (2007). ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Molecular and Cellular Biology, 27, 8834–8847.
Gu, D., Beltran, W. A., Li, Z., Acland, G. M., & Aguirre, G. D. (2007). Clinical light exposure, photoreceptor degeneration, and AP-1 activation: A cell death or cell survival signal in the rhodopsin mutant retina? Investigative Ophthalmology and Visual Science, 48, 4907–4918.
Hsu, M. C., Chang, H. C., & Hung, W. C. (2007). HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells. Endocrine-Related Cancer, 14, 655–667.
Morishita, R., Gibbons, G. H., Ellison, K. E., Nakajima, M., von Der Leyen, H., Zhang, L., et al. (1994). Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. Journal of Clinical Investigation, 93, 1458–1464.
Morishita, R., Sugimoto, T., Aoki, M., Kida, I., Tomita, N., Moriguchi, A., et al. (1997). In vivo transfection of cis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nature Medicine, 3, 894–899.
Simons, M., Edelman, E. R., DeKeyser, J. L., Langer, R., & Rosenberg, R. D. (1992). Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature, 359, 67–70.
de la Fuente, J., Kocan, K. M., Almazan, C., & Blouin, E. F. (2007). RNA interference for the study and genetic manipulation of ticks. Trends Parasitology, 23, 427–433.
Kuhn, R., Streif, S., & Wurst, W. (2007). RNA interference in mice. Handbook of Experimental Pharmacology 45:149–176.
Li, C. X., Parker, A., Menocal, E., Xiang, S., Borodyansky, L., & Fruehauf, J. H. (2006). Delivery of RNA interference. Cell Cycle, 5, 2103–2109.
Fang, S., Deng, P., & Zhao, S. (2004). Mechanism and prevention measures of gene silencing. Wei Sheng Yan Jiu, 33, 508–510.
Zhou, J. F., Tang, Y., Liu, W. L., Sun, H. Y., Hu, J. B., & Gong, J. P. (2003). The relationship between ATM gene silence inducing apoptosis susceptibility and abnormal CDK activity. Zhonghua Xue Ye Xue Za Zhi, 24, 90–93.
Zhang, H. W., Wang, X., Zong, Z. H., Huo, X., & Zhang, Q. (2009). AP-1 inhibits expression of MMP-2/9 and its effects on rat smooth muscle cells. The Journal of surgical research, 157, e31–e37.
Chen, B. Q., Yang, Y. M., Gao, Y. H., Liu, J. R., Xue, Y. B., Wang, X. L., et al. (2003). Inhibitory effects of c9, t11-conjugated linoleic acid on invasion of human gastric carcinoma cell line SGC-7901. World Journal of Gastroenterology, 9, 1909–1914.
Liu, H. K., Wang, Q., Li, Y., Sun, W. G., Liu, J. R., Yang, Y. M., et al. (2010). Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. The Journal of Nutritional Biochemistry, 21, 206–213.
Liu, M., Liu, R. H., Song, B. B., Li, C. F., Lin, L. Q., Zhang, C. P., et al. (2010). Antiangiogenetic effects of varieties of four grape in vitro. Journal of Food Science, 75, T99–T104.
Liu, J. R., Yang, B. F., Chen, B. Q., Yang, Y. M., Dong, H. W., & Song, Y. Q. (2004). Inhibition of beta-ionone on SGC-7901 cell proliferation and upregulation of metalloproteinases-1 and -2 expression. World Journal of Gastroenterology, 10, 167–171.
Ahn, J. D., Morishita, R., Kaneda, Y., Lee, S. J., Kwon, K. Y., Choi, S. Y., et al. (2002). Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circulation Research, 90, 1325–1332.
Bader, A. G., Brown, D., & Winkler, M. (2011). The promise of microRNA replacement therapy. Cancer Research, 70, 7027–7030.
Akhtar, S. (2010). Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: A focus on toxicogenomics. Expert Opinion on Drug Metabolism and Toxicology, 6, 1347–1362.
Daley, S. J., & Gotlieb, A. I. (1996). Fibroblast growth factor receptor-1 expression is associated with neointimal formation in vitro. American Journal of Pathology, 148, 1193–1202.
DeYoung, M. B., Tom, C., & Dichek, D. A. (2001). Plasminogen activator inhibitor type 1 increases neointima formation in balloon-injured rat carotid arteries. Circulation, 104, 1971–1972.
Shi, Y., Fard, A., Galeo, A., Hutchinson, H. G., Vermani, P., Dodge, G. R., et al. (1994). Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation, 90, 944–951.
Hu, Y., Cheng, L., Hochleitner, B. W., & Xu, Q. (1997). Activation of mitogen-activated protein kinases (ERK/JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2808–2816.
Izumi, Y., Kim, S., Namba, M., Yasumoto, H., Miyazaki, H., Hoshiga, M., et al. (2001). Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase prevents neointimal formation in balloon-injured rat artery. Circulation Research, 88, 1120–1126.
Pyles, J. M., March, K. L., Franklin, M., Mehdi, K., Wilensky, R. L., & Adam, L. P. (1997). Activation of MAP kinase in vivo follows balloon overstretch injury of porcine coronary and carotid arteries. Circulation Research, 81, 904–910.
Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410, 37–40.
Di Paolo, S., Gesualdo, L., Ranieri, E., Grandaliano, G., & Schena, F. P. (1996). High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. American Journal of Pathology, 149, 2095–2106.
Inaba, T., Ishibashi, S., Gotoda, T., Kawamura, M., Morino, N., Nojima, Y., et al. (1996). Enhanced expression of platelet-derived growth factor-beta receptor by high glucose. Involvement of platelet-derived growth factor in diabetic angiopathy. Diabetes, 45, 507–512.
Lindner, V., Lappi, D. A., Baird, A., Majack, R. A., & Reidy, M. A. (1991). Role of basic fibroblast growth factor in vascular lesion formation. Circulation Research, 68, 106–113.
Miano, J. M., Vlasic, N., Tota, R. R., & Stemerman, M. B. (1993). Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arteriosclerosis Thrombosis, 13, 211–219.
Ahn, J. D., Morishita, R., Kaneda, Y., Lee, K. U., Park, J. Y., Jeon, Y. J., et al. (2001). Transcription factor decoy for activator protein-1 (AP-1) inhibits high glucose- and angiotensin II-induced type 1 plasminogen activator inhibitor (PAI-1) gene expression in cultured human vascular smooth muscle cells. Diabetologia, 44, 713–720.
Morishita, R., Gibbons, G. H., Horiuchi, M., Kaneda, Y., Ogihara, T., & Dzau, V. J. (1998). Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: Using decoy approach against AP-1 binding site. Biochemical and Biophysical Research Communications, 243, 361–367.
Smith, J. D., Bryant, S. R., Couper, L. L., Vary, C. P., Gotwals, P. J., Koteliansky, V. E., et al. (1999). Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circulation Research, 84, 1212–1222.
Lauth, M., Wagner, A. H., Cattaruzza, M., Orzechowski, H. D., Paul, M., & Hecker, M. (2000). Transcriptional control of deformation-induced preproendothelin-1 gene expression in endothelial cells. Journal of Molecular Medicine, 78, 441–450.
Shichiri, M., Yokokura, M., Marumo, F., & Hirata, Y. (2000). Endothelin-1 inhibits apoptosis of vascular smooth muscle cells induced by nitric oxide and serum deprivation via MAP kinase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 989–997.
Hahn, A. W., Regenass, S., Resink, T. J., Kern, F., & Buhler, F. R. (1993). Morphogenic effects of endothelin-1 on vascular smooth muscle cells. Journal of Vascular Research, 30, 192–201.
Edelman, E. R., Simons, M., Sirois, M. G., & Rosenberg, R. D. (1995). c-myc in vasculoproliferative disease. Circulation Research, 76, 176–182.
Inui, H., Kitami, Y., Tani, M., Kondo, T., & Inagami, T. (1994). Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes only protein synthesis without activation of DNA synthesis. Journal of Biological Chemistry, 269, 30546–30552.
Heldin, C. H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79, 1283–1316.
Li, J., Huang, S. L., & Guo, Z. G. (2000). Platelet-derived growth factor stimulated vascular smooth muscle cell proliferation and its molecular mechanism. Acta Pharmacologica Sinica, 21, 340–344.
Karin, M., Liu, Z., & Zandi, E. (1997). AP-1 function and regulation. Current Opinion in Cell Biology, 9, 240–246.
Kelman, Z. (1997). PCNA: Structure, functions and interactions. Oncogene, 14, 629–640.
Campbell, J. H., Kocher, O., Skalli, O., Gabbiani, G., & Campbell, G. R. (1989). Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis, 9, 633–643.
Kocher, O., & Gabbiani, G. (1986). Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimal thickening, and culture. Differentiation, 32, 245–251.
Corjay, M. H., Thompson, M. M., Lynch, K. R., & Owens, G. K. (1989). Differential effect of platelet-derived growth factor- versus serum-induced growth on smooth muscle alpha-actin and non muscle beta-actin mRNA expression in cultured rat aortic smooth muscle cells. Journal of Biological Chemistry, 264, 10501–10506.
Miano, J. M., Tota, R. R., Vlasic, N., Danishefsky, K. J., & Stemerman, M. B. (1990). Early proto-oncogene expression in rat aortic smooth muscle cells following endothelial removal. American Journal of Pathology, 137, 761–765.
Miano, J. M., Vlasic, N., Tota, R. R., & Stemerman, M. B. (1993). Localization of Fos and Jun proteins in rat aortic smooth muscle cells after vascular injury. American Journal of Pathology, 142, 715–724.
Bendeck, M. P., Zempo, N., Clowes, A. W., Galardy, R. E., & Reidy, M. A. (1994). Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circulation Research, 75, 539–545.
Galis, Z. S., Sukhova, G. K., & Libby, P. (1995). Microscopic localization of active proteases by in situ zymography: Detection of matrix metalloproteinase activity in vascular tissue. The FASEB Journal, 9, 974–980.
Newby, A. C., Southgate, K. M., & Davies, M. (1994). Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Research in Cardiology 89(Suppl 1):59–70.