Toxicity and bioavailability of antimony to the earthworm (Eisenia fetida) in different agricultural soils

Environmental Pollution - Tập 291 - Trang 118215 - 2021
Qianyun Zhong1, Lianzhen Li2, Mengchang He1, Wei Ouyang1, Chunye Lin1, Xitao Liu1
1State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
2CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Tài liệu tham khảo

Ainsworth, 1990, Distribution of antimony in contaminated grassland .2. Small mammals and invertebrates, Environ. Pollut., 65, 79, 10.1016/0269-7491(90)90166-A Baek, 2014, Ecological effects of soil antimony on the crop plant growth and earthworm activity, Environ. Earth Sci., 71, 895, 10.1007/s12665-013-2492-y Bagherifam, 2021, The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils, Environ. Pollut., 270, 10.1016/j.envpol.2020.116270 Beaumelle, 2015, Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils, Sci. Total Environ., 520, 136, 10.1016/j.scitotenv.2015.03.021 Delgadillo, 2017, Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities, Ecotoxicol. Environ. Saf., 140, 230, 10.1016/j.ecoenv.2017.02.038 Evangelou, 2012, Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils, J. Environ. Manag., 108, 102, 10.1016/j.jenvman.2012.04.044 Fan, 2014, Photo-induced oxidation of Sb(III) on goethite, Chemosphere, 95, 295, 10.1016/j.chemosphere.2013.08.094 Filella, 2002, Antimony in the environment: a review focused on natural waters : I. Occurrence, Earth Sci. Rev., 57, 125, 10.1016/S0012-8252(01)00070-8 Filella, 2020, Occurrence and fate of antimony in plastics, J. Hazard Mater., 390, 10.1016/j.jhazmat.2019.121764 Fleuren, 2003, Feeding behaviour of Eisenia andrei in two different field contaminated soils, Pedobiologia Int. J. Soil Sci., 47, 670 Frankenbach, 2014, Duration of the standard earthworm avoidance test: are 48 h necessary?, Appl. Soil Ecol., 83, 238, 10.1016/j.apsoil.2014.04.006 Fu, 2010, Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China, Sci. Total Environ., 408, 3403, 10.1016/j.scitotenv.2010.04.031 Fu, 2011, Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China, Microchem. J., 97, 12, 10.1016/j.microc.2010.06.004 Gal, 2007, Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland), J. Environ. Sci. Health - Part A Toxic/Hazard. Subst. Environ. Eng., 42, 1263 Gestel, 2011, The bioaccumulation of Molybdenum in the earthworm Eisenia andrei: influence of soil properties and ageing, Chemosphere, 82, 1614, 10.1016/j.chemosphere.2010.11.047 He, 2019, Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects, J. Environ. Sci., 75, 14, 10.1016/j.jes.2018.05.023 He, 2012, Antimony pollution in China, Sci. Total Environ., 421–422, 41, 10.1016/j.scitotenv.2011.06.009 Hockmann, 2014, Release of antimony from contaminated soil induced by redox changes, J. Hazard Mater., 275, 215, 10.1016/j.jhazmat.2014.04.065 Huang, 2021, Effects of antimony contamination on bioaccumulation and gut bacterial community of earthworm Eisenia fetida, J. Hazard Mater. Ilgen, 2014, Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater, Geochem. Cosmochim. Acta, 132, 16, 10.1016/j.gca.2014.01.019 Johnson, 2005, Solubility of antimony and other elements in samples taken from shooting ranges, J. Environ. Qual., 34, 248, 10.2134/jeq2005.0248 Jongmans, 2003, Soil structure and characteristics of organic matter in two orchards differing in earthworm activity, Appl. Soil Ecol., 24, 219, 10.1016/S0929-1393(03)00072-6 Kilic, 2011, Histopathological and biochemical alterations of the earthworm (Lumbricus Terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey), Chemosphere, 83, 1175, 10.1016/j.chemosphere.2010.12.091 Lanno, 2004, The bioavailability of chemicals in soil for earthworms, Ecotoxicol. Environ. Saf., 57, 39, 10.1016/j.ecoenv.2003.08.014 Li, 2011, Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn, Environ. Int., 37, 1098, 10.1016/j.envint.2011.01.008 Li, 2008, Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction, Ecotoxicol. Environ. Saf., 71, 632, 10.1016/j.ecoenv.2008.04.001 Lourenco, 2011, Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides, Chemosphere, 85, 1630, 10.1016/j.chemosphere.2011.08.027 Maity, 2018, Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil, Chemosphere, 203, 307, 10.1016/j.chemosphere.2018.03.189 Mosneang, 2016, Soil eco-risk assessment using a simple earthworm (Eisenia fetida) qualitative avoidance test: a Romanian case study of five swine farm surroundings, J. Soil Water Conserv., 71, 414, 10.2489/jswc.71.5.414 Nahmani, 2007, Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils, Environ. Pollut., 149, 44, 10.1016/j.envpol.2006.12.018 Nannoni, 2016, Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy), Sci. Total Environ., 568, 1, 10.1016/j.scitotenv.2016.05.208 Nannoni, 2011, Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo, Soil Biol. Biochem., 43, 2359, 10.1016/j.soilbio.2011.08.002 Nannoni, 2014, Soil properties and metal accumulation by earthworms in the Siena urban area (Italy), Appl. Soil Ecol., 77, 9, 10.1016/j.apsoil.2014.01.004 Natal-Da-Luz, 2008, Avoidance tests in site-specific risk assessment-influence of soil properties on the avoidance response of collembola and earthworms, Environ. Toxicol. Chem., 27, 1112, 10.1897/07-386.1 2004 Okkenhaug, 2011, Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area, Environ. Pollut., 159, 2427, 10.1016/j.envpol.2011.06.028 Paoletti, 1999, The role of earthworms for assessment of sustainability and as bioindicators, Agric. Ecosyst. Environ., 74, 137, 10.1016/S0167-8809(99)00034-1 Richardson, 2015, Trace metals and metalloids in forest soils and exotic earthworms in northern new england, USA, Soil Biol. Biochem., 85, 190, 10.1016/j.soilbio.2015.03.001 Richardson, 2020, Synthesis of earthworm trace metal uptake and bioaccumulation data: role of soil concentration, earthworm ecophysiology, and experimental design, Environ. Pollut., 262, 10.1016/j.envpol.2020.114126 Roubalová, 2018, The role of CuZn- and Mn-superoxide dismutases in earthworm Eisenia andrei kept in two distinct field-contaminated soils, Ecotoxicol. Environ. Saf., 159, 363, 10.1016/j.ecoenv.2018.04.056 Roubalova, 2015, The role of earthworm defense mechanisms in ecotoxicity studies, Isj-Invert. Surviv. J., 12, 203 Saeed, 2013, Bioremoval of antimony(III) from contaminated water using several plant wastes: optimization of batch and dynamic flow conditions for sorption by green bean husk (Vigna radiata), Chem. Eng. J., 225, 192, 10.1016/j.cej.2013.03.079 Scott-Fordsmand, 2010, Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetica (Oligochaeta: Annelida), using neutral‐red retention assay, Environ. Toxicol. Chem., 19, 1774, 10.1002/etc.5620190710 Shahid, 2012, Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands, J. Hazard Mater., 219–220, 1, 10.1016/j.jhazmat.2012.01.060 Spurgeon, 1999, Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils, Appl. Soil Ecol., 11, 227, 10.1016/S0929-1393(98)00150-4 Spurgeon, 2004, Responses of earthworms (Lumbricus rubellus) to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system, Ecotoxicol. Environ. Saf., 10.1016/j.ecoenv.2003.08.003 Verbeeck, 2019, Soil organic matter increases antimonate mobility in soil: an Sb(OH)6 sorption and modelling study, Appl. Geochem., 104, 33, 10.1016/j.apgeochem.2019.03.012 Vijver, 2004, Internal metal sequestration and its ecotoxicological relevance: a review, Environ. Sci. Technol., 38, 4705, 10.1021/es040354g Vijver, 2003, Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms, Soil Biol. Biochem., 35, 125, 10.1016/S0038-0717(02)00245-6 Vijver, 2005, Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body, Sci. Total Environ., 340, 271, 10.1016/j.scitotenv.2004.12.018 Vithanage, 2013, Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils, J Colloid Interface, 406, 217, 10.1016/j.jcis.2013.05.053 Wang, 2020, Exploring the bioavailability of nickel in a soil system: physiological and histopathological toxicity study to the earthworms (Eisenia fetida), J. Hazard Mater., 383, 121169, 10.1016/j.jhazmat.2019.121169 Wang, 2010, Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China), J. Soils Sediments, 10, 827, 10.1007/s11368-010-0196-4 Wang, 2016, Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: effects of arsenic species, Chemosphere, 154, 161, 10.1016/j.chemosphere.2016.03.070 Wilson, 2010, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review, Environ. Pollut., 158, 1169, 10.1016/j.envpol.2009.10.045 Wu, 2012, Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta), Ecotoxicol. Environ. Saf., 81, 122, 10.1016/j.ecoenv.2012.05.003 Xi, 2014, Antimony adsorption on kaolinite in the presence of competitive anions, Environ. Earth Sci., 71, 2989, 10.1007/s12665-013-2673-8 Xia, 2017, Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida), Chemosphere Xing, 2018, Effects of benzotriazole on copper accumulation and toxicity in earthworm (Eisenia fetida), J. Hazard Mater., 351, 330, 10.1016/j.jhazmat.2018.03.019 Xu, 2021, Combined toxicity of soil antimony and cadmium on earthworm Eisenia fetida: accumulation, biomarker responses and joint effect, J. Hazard. Mater.Lett., 2 Xu, 2020, Toxicity of soil antimony to earthworm Eisenia fetida (Savingy) before and after the aging process, Ecotoxicol. Environ. Saf., 207 Yan, 2021, Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals, Sci. Total Environ., 754, 10.1016/j.scitotenv.2020.141873 Zhang, 2018, Comparison of diffusive gradients in thin-films (DGT) and chemical extraction methods for predicting bioavailability of antimony and arsenic to maize, Geoderma, 332, 1, 10.1016/j.geoderma.2018.06.023